
Scalable Feedback for Student Live Coding in Large Courses
Using Automatic Error Grouping

Sven Strickroth
sven.strickroth@ifi.lmu.de

LMU Munich
Munich, Germany

ABSTRACT
Programming courses in higher education are often attended by
several hundred students. In such large-scale courses, direct instruc-
tion is often the last resort, resulting in mostly passive students and
limited social interaction. The instructor may present worked exam-
ples or perform live coding and the students try to reproduce these
on their devices. However, there is usually no live coding where
students work on small programming assignments themselves di-
rectly in class, because the instructor does not have a timely/rapid
overview of themost important common issues that are prevalent in
class to support the students. This paper presents experiences with
a teaching format to activate students that addresses the aforemen-
tioned issues. After students have worked on a small assignment
and uploaded their solution attempt within a specified time period,
an extended e-assessment system analyzes all submissions and in-
stantly provides an overview of the number of correct submissions
as well as all common errors and their frequency to assist the in-
structor in the immediate tailored discussion. This approach makes
it possible to engage students, make student performance visible
to all participants, and discuss the most common errors. Students
liked “their” live coding, the discussion of “their” errors, and want
to do it more often, although not many students uploaded their
solution attempts. The teaching scenario, benefits, pitfalls, possible
improvements, and further application scenarios are discussed.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics→ Computing education.

KEYWORDS
Live Coding, Audience Response, Just-in-Time Teaching, Program-
ming Education, Live Feedback, Formative Assessment, E-Assessment

ACM Reference Format:
Sven Strickroth. 2024. Scalable Feedback for Student Live Coding in Large
Courses Using Automatic Error Grouping. In Proceedings of the 2024 In-
novation and Technology in Computer Science Education V. 1 (ITiCSE 2024),
July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3649217.3653620

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024), July
8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653620.

1 MOTIVATION
Many beginners perceive learning programming as hard and strug-
gle with it [23]. Programming requires several skills to be mastered
at the same time such as knowledge of the formal programming
language, problem-solving skills, computational thinking, and de-
bugging skills [10, 23].

In higher education, programming (concepts) are typically taught
in lectures with accompanying homework assignments to practice
the introduced concepts and exercise sessions led by teaching as-
sistants. In these courses, instructors often have to deal with high
heterogeneity as some students have already learned programming
in school or on their own and such courses are regularly attended
by a variety of academic disciplines such as engineering, science,
or economics [33]. At the same time, introductory programming
courses are often attended by several hundred students [5, 38]. In
such scenarios, direct instruction is often the last resort, resulting in
limited social interaction, discussion, and personal feedback, which
ultimately leads to passive students and higher dropout rates [5, 38].
Besides direct instruction of concepts, live coding led by the teacher
is often used as a teaching method to demonstrate solution strate-
gies [34]. Students can be encouraged to reproduce the steps on
their devices but this is not the same as solving the problem on their
own. Furthermore, experience shows that often only the “better”
students ask questions and the pace of the lecture is adjusted to
suit them. In general, many students are afraid to ask (potentially
“stupid”) questions in front of a large audience, or are intimidated
by detailed questions from more advanced students [15, 42].

Actively working on problems yourself and receiving feedback
is considered one of the most important drivers of learning [13].
However, providing rapid/timely (personal) feedback is difficult
to do in large courses. This is particularly true for in-class coding
assignments:Without having an overview of issues that affect many
students, it is not possible to discuss the actual most pressing issues.
Instructors may discuss alleged frequent mistakes, however, these
often do not match the actual encountered ones [7, 18]. Homework
assignmentmay also be not optimal, because they have to be handed
in before a deadline, and then corrected. By the time the feedback
is available to the students and to the instructor, it is often at least
a week since the concept was taught in a lecture.

Educational software can help solve these problems: enable new
teaching scenarios, activate students, provide instructors with more
information about their students, and promote interactivity and
discussion [38]. The contribution of this paper is twofold: First, it
describes in detail a teaching format in which students are activated
by working directly in class on small programming assignments
and instructors are supported with automatically generated instant
overviews of student performance and the most common errors

https://orcid.org/0000-0002-9647-300X
https://doi.org/10.1145/3649217.3653620
https://doi.org/10.1145/3649217.3653620
https://doi.org/10.1145/3649217.3653620
© Sven Strickroth 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2024 Innovation and Technology in Computer Science Education
V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653620.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

and their frequency for just-in-time teaching (i. e., to scale stu-
dent live coding and enable instructors to provide feedback on the
most common syntactic and functional errors).1 Second, the paper
presents experience gained with this approach in a first-semester
Java computer science course.

The remainder is structured as follows: First, related research is
discussed. Second, the goals and teaching scenario are described.
Third, the gained experiences are presented. The paper concludes
with a discussion, summary, and an outlook.

2 RELATED RESEARCH
Four fields of related research need to be considered: First, live
coding in lectures, audience response systems (ARS), automatic
e-assessment systems for evaluating programming assignment sub-
missions, and research on programming errors.

There is a recent literature review on live coding by Selvaraj et al.
[34]. The authors provide a common base definition of live cod-
ing, stating that “it is the process of designing and implementing a
coding project in front of a class during lecture” [34, p. 166], but con-
clude that there is disagreement about the minimum requirements:
They found that live coding most often refers to an instructor-led
activity where code is written from scratch and/or prepared code
is discussed. Student-led and collaborative live coding, where in-
structors take up students’ ideas and/or students program alongside
instructors, is less common (e. g., [19, 32]). It remains unclear, how-
ever, whether these approaches scale. The authors conclude that live
coding is rarely active learning in contrast to short in-class exercises
after an instructor’s demonstration, where students are not just pas-
sively listening [34]. Commonly reported benefits include improved
debugging skills, exposure to programming as a process, increased
student engagement, and application of concepts. Reported dis-
advantages of live coding include its time-consuming nature and
students struggling to keep up with the pace of programming or
to take notes. There are also tools that support instructor-led live
coding with special highlighting and sequencing features (e. g., [8]).

An established method to activate students and to get an insight
on the understanding of students in (large) classes are audience
response systems (ARS), which (anonymously) collect student re-
sponses and instantly provide aggregated results [11]. There is a
wide variety of didactic scenarios such as knowledge checks of
previously taught concepts, feedback, group interactions, compe-
titions, or peer discussion [20, 24–26]. ARS have been shown to
increase student engagement, knowledge retention, participation,
and classroom interaction (e. g., [3, 11, 17, 20, 24, 25, 29, 30]). In re-
cent years, the development of ARS has been actively pursued (e. g.,
[12, 22, 24, 42]). ARS are often implemented as smartphone apps or
(mobile) websites, allowing remote students to participate in hybrid
courses, but most only support simple multiple-choice questions
[24]. In the context of programming education, there are four no-
table approaches: Mader and Bry proposed an ARS that employs
puzzles for small coding assignments in Haskell [24]. There are
approaches by Hauswirth and Adamoli [14] as well as Robbins [31]
to support teaching Java using multiple-choice questions and small
fill-in-the-gap programming tasks with a simple text field. Both
systems allow the lecturer to manually inspect/select submissions

1The general idea and the requirements have already been published as a poster: [37]

for discussion in class, but there seems to be no automatic evalua-
tion. It is also unclear, how many students participated in the case
studies (seems to be less than 20). Finally, there is a prototype of
Ebert and Ring [10] that can collect and present common syntax
errors of Python assignments in-class. Their tool also has features
for sharing code with fellow students and/or the instructor. It was
successfully tested during multiple weeks in a course with about 90
students. The authors report that the error information was helpful,
but not all submissions could be discussed during the course. Never-
theless, they argue strongly in favor of in-class coding assignments
for students as opposed to the presentation of worked examples
or live coding sessions conducted by an instructor. However, their
system cannot assess functional correctness.

To facilitate the teaching of large classes, many (semi-)automated
e-assessment systems have been developed [21, 41]. These tools can
deliver rapid feedback without the need for instructor involvement,
or support semi-automatic grading (e. g., [39, 40]). However, such
systems are neither designed nor optimized for in-class usage.

Extensive research has been conducted on the analysis of mis-
conceptions, (common) errors in programming environments, their
frequencies, and origins (e. g., [1, 4, 9, 18]). In general, students seem
to frequently make similar errors and, therefore, a grouping makes
sense in principle (cf. [16]). Disagreement exists among instructors,
as well as discrepancies between their perceptions of frequent pro-
gramming errors and the actual errors encountered by students
[7, 18]. Hence, it makes sense to analyze students’ submissions
and discuss the actual most common errors. There also is research
different categorizations, but these are out of scope (e. g. [1, 27, 43];
runtime errors are rarely considered, e. g., [27]). Awareness of stu-
dents’ errors and misconceptions and strategies to address those is
said to be a key element of pedagogical content knowledge [9].

In summary, students should actively solve programming assign-
ments during lectures. But there is a need for “live” overviews of
common syntactic and functional errors for teachers to effectively
discuss the actual most common issues, especially in large classes.
Also, little experience exists with such approaches in large courses.

3 GOAL AND TEACHING SCENARIO
The main goal is to activate students and let them work on pro-
gramming assignments themselves during a lecture. For this to
be effective, it is important for the instructor to know what the
students are doing and what the common problems are so that s/he
can address them directly based on the specific needs of the group.
Furthermore, the teaching approach aims to show students alterna-
tive solution strategies. This goes beyond the traditional methods
of live coding or the presentation of worked examples by an in-
structor where only a few predetermined strategies are discussed
by the lecturer and the students are often rather passive consumers
(cf. [10, 34]). In the latter case, students cannot apply their newly
acquired knowledge on their own and develop their own possibly
creative solutions in an iterative and exploratory process. Involving
students in programming tasks during lessons engages them and
improves their programming skills. In addition, students can see
that they are not the only ones with a particular error and can
compare their own performance with that of their peers, giving
them a better understanding of their learning progress.



Scalable Feedback for Student Live Coding in Large Courses Using Automatic Error Grouping ITiCSE 2024, July 8–10, 2024, Milan, Italy

To implement this teaching approach, students are required to
bring their laptops to in-person lectures or use their own (desktop)
computers for remote attendance. The lecturer prepares coding
problems (code templates, and tests) in advance that need to be
completed with simple algorithms related to the concept taught
in the lecture. This approach fosters higher-order thinking skills,
such as problem-solving, compared to using simplistic multiple-
choice questions. These assignments are then presented in class,
and students work on them for about 10–15 minutes. Optionally,
a teacher-led or collaborative live coding session can be held be-
forehand in which the specific concept is revisited and/or similar
problems are solved that students can built upon. This allows stu-
dents to observe the process of problem solving and see how to
apply the concepts taught before attempting it themselves.

During this assignment period, students have the opportunity
to discuss and collaborate with their seat neighbors while the in-
structor can move around the lecture hall to address questions,
listen to arguments, and identify common challenges (cf. peer dis-
cussion [26]). Once students complete their work, they upload it
to an extended e-assessment system. When the time limit expires,
the instructor closes the submission and triggers the automatic
evaluation of all submissions.

Figure 1: Screenshot of the test result overview with grouped
common errors and links to the corresponding submissions

The submissions are automatically checked in the background
using established e-assessment features, and the focus shifts to the

features provided by ARS: The system groups submissions by errors
and provides an overview of the overall test results as well as a
ranking of the errors by frequency for the lecturer, which can be
projected for the class to see (cf. Figure 1).

Based on the observations while moving around in the lecture
hall and this overview, the instructor gets an impression of the
understanding and performance of the class and can start a tailored
discussion. The instructor can clarify any errors by selecting and
opening specific submissions. Additionally, the instructor can ex-
plain potential strategies for resolving the errors. This can be done
for all common errors so that students receive timely feedback on
their just submitted work. At the same time, the instructor can high-
light different solution strategies and address issues s/he observed
while moving around. Finally, the instructor can program/show one
or multiple model solutions that have not been previously seen.

4 EXTENDING THE GATE SYSTEM
The web-based e-assessment system GATE [40] developed by the
author already supports the automatic test execution and optional
feedback generation for students. GATE is designed as a submission
system. Students can upload their work as many times as they like
until the deadline, even if it contains invalid code. Feedback is
not provided automatically after each upload, but students must
explicitly request it. This design allows for easy configuration of the
availability of tests to students and also prevents abuse (cf. [2]). In
this scenario, tests are disabled for students in order to gain insight
into their “real” competencies. Three types of tests are supported
by GATE: syntax tests based on the OpenJDK compiler, JUnit tests,
and input/output (IO) tests. For the IO tests the student code is
called in several configurable steps, the result is printed to the
console by the test driver, and then compared to predefined expected
outputs for each step until all steps are executed, an unhandled error
occurred, or a timeout is exceeded and the execution is aborted.
The requirements for a system for this teaching approach are [37]:

• providing code templates/skeletons to students
• upload and automatic test capabilities for programming as-
signments (but no instant feedback on upload for students)

• (missing) tests need to be triggered on-demand and finish
within a few minutes (all tests results need to be stored)

• the system should provide a quick, overview of the number
of submissions that passed the tests and a ranking of themost
common errors (in a grouped way with links to submissions,
including both syntactic and functional errors) that can be
shown on a projector

• allow the instructor to access all (erroneous and correct) sub-
missions in an anonymous way without disclosing specific
students for inspection and discussion in class.

Only minor extensions were necessary in GATE: A new option
was integrated to close the submissions and to instantly execute all
configured tests. After executing the tests, the results are automati-
cally grouped using a text-based grouping approach. This approach
considers syntax errors, failed or passed test cases, and any thrown
exceptions to group the errors. A paper with a detailed description
of the algorithm is currently under review [35]. Finally, an overview
feature (cf. Figure 1) and an anonymization feature have been added
that displays only submission IDs instead of student names.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

5 EXPERIENCES AND LESSONS LEARNED
The following subsections introduce the setting of the course and
present the author’s experience as the instructor. Finally, a ques-
tionnaire was send to all students enrolled in the course to collect
their experiences at the end of the semester after the exam.

5.1 The Setting
The prototype was used in a first-semester introductory Java pro-
gramming course at LMU Munich, Germany, during the winter
semester of 2021/2022. The course was delivered in a hybrid format,
allowing students to attend lectures either in person or remotely
via Zoom. Lecture recordings were also provided to students. About
900 students were enrolled in that course of which 300–400 students
attended the course in person regularly.2

The course was designed to consist of two parts. The first part
comprised traditional lectures that taught theoretical concepts such
as variables, procedures, object orientation, inheritance, and re-
cursion. The second part was designed to be more interactive. In
this part, concrete (worked) examples were presented and possi-
ble alternative solutions discussed. Additionally, there were two
forms of live coding. Live coding of the professor and smaller live
coding sessions of the students. The lecturer’s coding examples
were designed in a way that the student should try to reproduce
these synchronously on their devices. Therefore, the students were
aware that they need a laptop for the face-to-face lecture. In four
of the possible eight practice lectures, the proposed feature of the
GATE system was used to activate the students with one program-
ming assignment each. The lecturer covered programming concepts
through examples and live coding that were relevant to the new
problem the students needed to solve afterwards. As time was
already mentioned as a common issue (cf. [14, 34]), only one as-
signment was set for a lecture. All students who attended a lecture
(either in person or remotely) could voluntarily take part in the
live coding. The students were already familiar with GATE, as it
was also used for the voluntary submission of homework, provided
automatic feedback on it, and to orchestrate voluntary homework
peer (code) reviews (cf. [36]).

The typical steps of the practical sessions are as follows: First,
concepts were revisited using (worked) examples. Prepared exam-
ples were explained, interactively modified, and debugged, i. e., the
instructor deliberately made mistakes or asked how the example
could be extended, how the code could be improved, and what
alternative solutions may be possible. In two sessions, interactive
object-oriented modeling was conducted under the guidance of
the instructor and then partially implemented. Similar to cooking
shows, in the last session some simple classes (POJOs) were pre-
pared. Partly means that one method was intentionally left out that
could be implemented similarly to another presented method and
then the students were asked to complete it on their own.

Table 1 provides an overview of the assignments, including the
number of submissions and composed groups for the syntax tests.
The first assignment required the implementation of two methods
to calculate the sum and mean of all entries in an integer array. The
second assignment involved filling two methods (hasPositiveBal-
ance and transferMoneyTo) of a bank account class. In the third
2Rough estimate based on the crowdedness of the lecture hall.

assignment, all vocals of a string should be counted recursively.
In the fourth assignment, the students were asked to implement
missing methods to retrieve all available media of a collaboratively
designed library for books/CDs/etc. Code templates were provided
for all assignments where methods to be implemented were ei-
ther empty or missing. For some assignments, especially where
multiple methods should be implemented, independent tests were
implemented that were grouped and displayed separately (one test
overview is shown in Figure 1). About 55–65 students submitted
their work in the live coding sessions. Syntactical correct were
about 60 to 91 % of the submissions. Functional correctness ranges
between 7 and 82% – edge cases were implemented correctly by
very few students (e. g., usage of integer division and no handling
of an empty array in assignment 2). For all assignments, there were
groups found that consisted of between 2.1 and 3.6 submissions on
average, as well as up to three groups consisting of more than 10
submissions for the syntax tests.

Table 1: Overview of submissions (S), topics, week of the se-
mester (W), syntactic correctness (SC), the average number
of submissions per group (ASG), and number of groups com-
prising more than 10 submissions (#G>10S)

W Assignment title #S #SC ASG #G>10S
2 Array operations 64 91 % 3.6 3
3 Object orientation 65 86 % 2.9 2
5 Recursion 55 85 % 2.1 0
7 OO design 55 60 % 3.4 3

5.2 Lecturer’s Experiences
After each lecture, notes on experiences were taken. This section
summarizes and reflects on these. The following categories are
inspired by the study of Hauswirth and Adamoli [14].

What problems to post? An important point is to develop
assignments that match the concepts taught and are also expected
to be doable during class. Also, pedagogical aspects need to be
considered when designing the assignment and to develop fine
grained tests and test-steps that are usable for forming groups.
Here, different functional errors need to be anticipated already
(such as integer vs. double division, missing null checks, division by
zero; cf. misconception research, e. g. [9]). A significant challenge
was to create supplementary smaller assignments in addition to the
exercise sheets. This turned out not to be feasible or possible for all
practical lectures without much repetition and limited resources.
Also, different solution strategies needed to be thought of (e. g.,
switch case vs. if; for vs. for-each vs. Java streams) in case those
were not used by the students for discussing those.

Time to allot for working on the assignments and partici-
pation: The scheduled time of about 10 minutes for working on the
programming assignment was too long for more experienced stu-
dents and possibly too demanding for less advanced students in the
heterogeneous group. It is also crucial to consider the time needed
to download and import code templates into the IDE (Eclipse). This
was estimated to take less than a minute, however it took signifi-
cantly longer for less advanced students. Table 1 shows the number
of submissions for each live coding assignment. Compared to the



Scalable Feedback for Student Live Coding in Large Courses Using Automatic Error Grouping ITiCSE 2024, July 8–10, 2024, Milan, Italy

overall enrolled and attending students, the numbers seem to be
quite low. The submissions were closed after a 10-second count-
down in which no student seem to have indicated to need just a
little more time for the submission. Hence, waiting for the majority
to hand in their solutions as reported in [14] was not possible.

Quality of the groups, and time to allot for discussion: In
general, the formed groups were usable for getting an overview,
and selecting one or two submissions for in-depth discussion. Inter-
estingly, the submissions with different errors were also so diverse
that different solution strategies could be discussed simultaneously
without having to actively search for them. The “cannot find sym-
bol” group turned out to be not optimal as the reasons were too
diverse (e. g., wrong package, typo in class/method names, students
inventing methods). However, there were not many groups and
each group only contained a handful of respective submissions; sev-
eral ones could be opened manually to decide whether they need
to be discussed. All syntax errors in the submissions were reported
repeatedly for all function tests – this needs to be optimized. Special
care on consistency should be taken when conducting collaborative
object-oriented modelling as preparation for an assignment: In the
last assignment, a method name was written in a different case
than the code template, causing syntax errors for students who
did not use the provided template. If multiple methods need to be
implemented, students may leave a method empty, resulting in syn-
tactically incorrect submissions (i. e., missing a return statement),
even if other methods are implemented correctly. It is a didactic
decision whether to leave methods empty or fill them with a bogus
return statement. Students may also delete a method referenced
in the test code, resulting in a compilation or runtime error. To
avoid this, Java reflection should be used. Five to ten minutes were
allotted for discussion. This proved to be tight, but sufficient to
discuss the most common issues and to present a correct solution.

Technical issues: There were no technical issues experienced –
neither with the system nor the WiFi in the lecture hall. The test
execution and grouping always took less than half a minute.

Benefits: In general, the live coding of the students and using
the system to get an “instant” overview of the common issues
was experienced as interesting and helpful. Particularly, higher
syntactic correctness rates were expected. Although only a fraction
of the students submitted, both the instructor and the students
eagerly awaited the results when the submission was closed and the
evaluation was triggered. This was experienced as a good starting
point for discussing errors as the students seemed to be focused and
activated. The instructor also perceived more interactivity, such
as more (in-depth) questions about specific errors and possible
solutions to fix them, compared to his live coding sessions (there
also, intended and unintended errors occurred). In particular, the
discussion of most submissions with a “missing return statement”
error led to some amusement in the class when they turned out to be
just the template. It is hard to quantify how helpful walking around
in the lecture hall was. Students rarely dared to ask questions (one
to three per session). Students needed to be actively asked whether
there are problems. Often “no” was answered. However, observing
the solution attempts provided insights into the students’ thought
processes, which served as a solid foundation for further discussion.

5.3 Students’ Questionnaire Evaluation
A digital questionnaire was distributed to all students enrolled in
the course, requesting their opinion on the live coding sessions after
the end-of-semester exam. 140 students answered the questionnaire.
These students uploaded a solution attempt in 𝑥 = 1.07 live coding
sessions (median=m=1, [0; 4]). Only 22 students uploaded their
solution in at least 3 sessions. Table 2 presents a summary of the
results obtained from the seven closed questions. The Likert scale
used ranged from 1 (strongly disagree) to 4 (strongly agree). Most
students tried to work on their own solution (overall m=4, even
many of those who did not upload: 𝑥=3.6, m=3), want to do this
procedure more often (m=4), and found the discussion to add value
(m=4). There are tendencies that it was experienced as exciting to
discuss mistakes and solutions in plenary (m=3), and the discussion
of real assignments motivated the students to attend the lecture
or watch it live (m=3). The allotted time was perceived as mostly
sufficient (m=3). The ratings of students who uploaded their work
in ≥ 3 sessions are statistically significantly higher (all 𝑝 < .02,
UTest), except for “I exchanged ideas with my seatmates” (𝑝 = .266).

Table 2: Overview of the students’ ratings on the question-
naire divided by uploads in # sessions, Likert scale from 1
(do not agree at all) to 4 (fully agree); 𝑥 : mean, m: median

Statement ≤ 2 sessions ≥ 3 sessions
𝑥 m n 𝑥 m n

I always tried to work out my own
solution.

3.6 3 105 4.0 4 22

There was enough time to solve the
tasks.

2.8 3 104 3.6 4 22

While solving the assignment, I ex-
changed ideas with my seatmates.

2.7 3 98 2.4 3 21

I found the discussion of the submis-
sions to add value.

3.3 3 101 3.7 4 22

It was exciting to discuss mistakes
and solutions in plenary.

3.2 3 98 3.7 4 21

Discussing real assignments moti-
vated me to attend the lecture or
watch it live.

2.7 3 91 3.5 4 19

This procedure should be done more
often.

3.4 4 93 3.8 4 19

Furthermore, the questionnaire contained two (optional) open-
ended questions “If you haven’t regularly participated the live cod-
ing, why not?” (31 answers) and “Do you have any comments about
the live coding?” (25 answers) that were evaluated using Thematic
Analysis [6, 28]. For the first question, the main reasons were that
there was too little time for working on the assignments (n=8), stu-
dents could not attend the lecture due to e. g. conflicts with other
courses (n=7), the assignment was not clear enough (n=5), seeing no
advantage to work on too easy tasks (n=5), and not having a laptop
(n=2). One student answered that s/he was distracted and another
student reported that s/he was not able to follow the lecture.

For the second question the most frequent aspect was that the
students explicitly liked the approach (n=9). Followed by request-
ing more time (n=5), acknowledging that the approach already
takes a lot of time (n=5), the wishes to discuss more alternative
solutions (n=4), and to see the test results for their own solution



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

(n=4). Mentioned once each were that more assignments should
be set, the request for more complex assignments and to conduct
this more frequently, the tasks were not always clearly enough, all
submissions should be made public, too much focus on errors, “nice
variation to traditional lectures”, more time for the discussion, and
one student found the whole approach to be superfluous.

6 DISCUSSION
The approach has shown that student live coding and discussing
the actual most common errors is possible in a large class – not only
in smaller courses (cf. [10, 14]). However, not many students par-
ticipated in the submission of solutions in the lectures (cf. Table 1).
Some students were unable to attend, either in person or remotely,
and a significant number indicated they needed more time. It is
unclear whether this was the main reason or whether they were
unable to solve the tasks, did not want to submit partial solutions,
or simply chose not to submit. It was anticipated that anonymity
would reduce barriers to student participation, as demonstrated
by ARS interventions. The submission of unaltered template code
may suggest that certain students intended to demonstrate that
the assignment was beyond their ability. Additionally, some stu-
dents have indicated explicitly that the assignments were too easy
and chose not to work on them. A solid number of submissions
is necessary for an adequate discussion of common errors – this
was the case on the study. Gamification approaches (e. g., [25]) may
help to attract more students. The low submission rate requires
further investigation. Nevertheless, the live coding and evaluation
activated the students and got them to focus on the discussion. Also,
students seemed to have like the approach and requested to conduct
it more often. Identified challenges are comparable to those already
reported for smaller classes (cf. [14]). Therefore, this research raises
pedagogic questions such as what and how many problems to pose,
how to deal with the uneven time needed by students (cf. [14]),
but also on how to design tasks and to write good tests that elicit
distinctive groups for discussion.

The presented approach focused on making common errors vis-
ible and discussing them during a lecture. Hence, the focus and
type of grouping are targeted to the instructor who explains the
issues on specific examples. Students also requested to see more
alternative solution strategies and to get feedback for their own
submission. Hence, the prototype should be extended e. g. by sug-
gesting correct submissions with different solution strategies, to
show the personal test result to the students (it remains unclear
now, why the latter was not considered from early on), or to ask
students to resubmit an improved version (cf. peer discussion [26]).

The group names are not optimal, particularly if they should be
easily interpretable for others. Instead of writing “Step n”, titles
of the test cases could be used to improve the group names. Still,
discussing the errors needs experience from the lecturer on the
different meanings of the errors as well as to quickly understand the
submitted code. Explanations or another categorization (cf. [1, 43])
may be helpful, particularly, when the groups are made available to
the students. This kind of feedback may help them to better recap
the instructor’s explanation after the lecture and also to provide
further feedback on errors that could not be discussed in-class

(e. g., due to time reasons) – a problem reported in [10]. Also, a
categorization such as “empty submission” should be considered.

The velocity for executing the tests and grouping the submissions
might be increased if the tests are directly triggered when the
submissions are uploaded. Still, less than one minute for testing
and grouping seems to be okay as some details of the task and
gathered experience from walking around in the lecture hall can
already be discussed in the meantime.

The presented experience is based on a single course at a spe-
cific university. The approach was implemented in a Java course,
but it can be applied to other programming languages and sce-
narios as well. Due to resource constraints, the instructor of the
course and author of this paper are the same person. Additionally,
there was self-selection of students who participated in live coding
and uploaded their solutions, as well as those who completed the
questionnaire at the end of the semester. This may introduce bias to-
wards more engaged students. However, there may also be a bias in
the opposite direction, where high-performing students did not sub-
mit their solutions because they perceived the assignments as “too
easy”. The data suggests that both scenarios are plausible. Finally,
there is an overrepresentation of students in the questionnaire who
did not upload their solutions in the live coding. Hence, the results
are reported separately for these two groups and aggregated.

7 CONCLUSIONS AND FUTUREWORK
In this paper a scalable teaching format in which students solve
small programming assignments during a lecture is described. The
e-assessment system GATE was extended to support instructors
in getting an overview of all student submissions and common
issues faced during the process and to discuss alternative solution
strategies. This allows for timely/rapid feedback and targeted in-
tervention that would not be possible otherwise. The e-assessment
system provides an overview of the correctness of the submissions,
including the most common syntactic and functional errors and
their frequencies.

The approach was tested successfully in a first-semester Java
course and rated as helpful by the instructor. In a post-term ques-
tionnaire, the majority of responding students found the approach
valuable and liked it. However, the concrete execution needs im-
provement, such as allowing more time to work on assignments. It
is worth noting that only a small number of students participated
in the live coding.

The grouping approach should be further optimized, e. g. filter
out “empty” submissions. Apart from the grouping, the system
could suggest correct submissions that use different strategies to
not only discuss erroneous submissions. Can such an approach also
be used to discuss coding style?

This research paves the road for pedagogic questions such as
when and how to use it optimally in lectures. Also, the general
approach can be used in different scenarios such as in schools,
smaller courses, in (group) programming practicals to get a bet-
ter overview of the progress and common issues, and supporting
teaching assistants preparing their exercise sessions.

I thank all the students who participated in the live coding and/or
provided feedback in the questionnaire!



Scalable Feedback for Student Live Coding in Large Courses Using Automatic Error Grouping ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Ella Albrecht and Jens Grabowski. 2020. Sometimes It’s Just Sloppiness - Studying

Students’ Programming Errors and Misconceptions. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (SIGCSE ’20). ACM.
https://doi.org/10.1145/3328778.3366862

[2] Ryan Baker, Jason Walonoski, Neil Heffernan, Ido Roll, Albert Corbett, and
Kenneth Koedinger. 2008. Why students engage in “gaming the system” behavior
in interactive learning environments. Journal of Interactive Learning Research 19,
2 (2008), 185–224. https://www.learntechlib.org/primary/p/24328/

[3] Jerrold E. Barnett and Alisha L. Francis. 2012. Using higher order thinking
questions to foster critical thinking: a classroom study. Educational Psychology
32, 2 (mar 2012), 201–211. https://doi.org/10.1080/01443410.2011.638619

[4] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful. In ITiCSE-WGR ’19: Proceedings of the Working Group
Reports on Innovation and Technology in Computer Science Education. ACM. https:
//doi.org/10.1145/3344429.3372508

[5] James T. Boyle and David J. Nicol. 2003. Using classroom communication systems
to support interaction and discussion in large class settings. Research in Learning
Technology 11, 3 (sep 2003). https://doi.org/10.3402/rlt.v11i3.11284

[6] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[7] Neil C.C. Brown and Amjad Altadmri. 2014. Investigating novice programming
mistakes: educator beliefs vs. student data. In Proceedings of the tenth annual
conference on International computing education research (ICER ’14). ACM. https:
//doi.org/10.1145/2632320.2632343

[8] Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching Programming at Scale
via Live Coding. In Proceedings of the Sixth (2019) ACM Conference on Learning @
Scale (L@S ’19). ACM. https://doi.org/10.1145/3330430.3333627

[9] Luca Chiodini, IgorMoreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.
Santos, and Matthias Hauswirth. 2021. A Curated Inventory of Programming
Language Misconceptions. In Proc. ITiCSE. ACM. https://doi.org/10.1145/3430665.
3456343

[10] Michael Ebert and Markus Ring. 2016. A presentation framework for pro-
gramming in programing lectures. In Proc. EDUCON. IEEE, 369–374. https:
//doi.org/10.1109/EDUCON.2016.7474580

[11] Carmen Fies and Jill Marshall. 2006. Classroom Response Systems: A Review of
the Literature. J Sci Educ Technol 15, 1 (2006), 101–109. https://doi.org/10.1007/
s10956-006-0360-1

[12] Daniel Gerhardt, Jan Kammer, Daniel Knapp, Klaus Quibeldey-Cirkel, Christoph
Thelen, and Paul-Christian Volkmer. 2013. ARSnova: ein Audience Response
System für Inverted-Classroom-Szenarien mit Unterstützung von Just-in-Time
Teaching und Peer Instruction. In Proc. DeLFI 2013. Gesellschaft für Informatik
e. V., Bonn, 297–300.

[13] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Educa-
tional Research 77, 1 (mar 2007), 81–112. https://doi.org/10.3102/003465430298487

[14] Matthias Hauswirth and Andrea Adamoli. 2009. Solve & evaluate with informa: a
Java-based classroom response system for teaching Java. In PPPJ ’09: Proceedings
of the 7th International Conference on Principles and Practice of Programming in
Java. ACM. https://doi.org/10.1145/1596655.1596657

[15] Niels Heller and Francois Bry. 2019. Organizing Peer Correction in Tertiary STEM
Education: An Approach and its Evaluation. International Journal of Engineering
Pedagogy (iJEP) 9, 4 (2019), 16–32. https://doi.org/10.3991/ijep.v9i4.10201

[16] Niels Heller and François Bry. 2021. Human computation for learning and
teaching or collaborative tracking of learners’ misconceptions. In Intelligent
Systems and Learning Data Analytics in Online Education. Elsevier, 323–343. https:
//doi.org/10.1016/b978-0-12-823410-5.00015-2

[17] Amy Hoyt, John A McNulty, Gregory Gruener, Arcot Chandrasekhar, Baltazar
Espiritu, David Ensminger, Ron Price Jr, and Ross Naheedy. 2010. An audience
response system may influence student performance on anatomy examination
questions. Anatomical Sciences Education 3, 6 (2010), 295–299. https://doi.org/10.
1002/ase.184

[18] J. Jackson, M. Cobb, and C. Carver. 2005. Identifying Top Java Errors for Novice
Programmers. In Proceedings Frontiers in Education. IEEE. https://doi.org/10.
1109/fie.2005.1611967

[19] Luke Johnston, Madeleine Bonsma-Fisher, Joel Ostblom, Ahmed Hasan, James
Santangelo, Lindsay Coome, Lina Tran, Elliott De Andrade, and Sara Mahallati.
2019. A graduate student-led participatory live-coding quantitative methods
course in R: Experiences on initiating, developing, and teaching. Journal of Open
Source Education 2, 16 (June 2019), 49. https://doi.org/10.21105/jose.00049

[20] Robin H Kay and Ann LeSage. 2009. Examining the benefits and challenges
of using audience response systems: A review of the literature. Computers &
Education 53, 3 (2009), 819–827. https://doi.org/10.1016/j.compedu.2009.05.001

[21] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. TOCE
19, 1, Article 3 (2018). https://doi.org/10.1145/3231711

[22] Alexander Kiy and Sven Strickroth. 2017. Potentiale aufzeigen und Synergien
nutzen: Audience Response Systeme als ein Anwendungsgebiet hochschulüber-
greifender Kooperationen. In Joint Proceedings of the Pre-Conference Workshops
of DeLFI and GMW 2017, Vol. 2092. CEUR-WS.org, Bonn, Germany. http://ceur-
ws.org/Vol-2092/paper11.pdf

[23] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Sys-
tematic Literature Review. In Proc. ITiCSE 2018 Companion. 55–106. https:
//doi.org/10.1145/3293881.3295779

[24] Sebastian Mader and François Bry. 2019. Audience Response Systems Reimagined.
In Proc. ICWL. 203–216. https://doi.org/10.1007/978-3-030-35758-0_19

[25] Sebastian Mader and François Bry. 2019. Fun and Engagement in Lecture Halls
through Social Gamification. International Journal of Engineering Pedagogy (iJEP)
15, 2 (2019), 117–136. https://doi.org/10.3991/ijep.v9i2.10163

[26] Eric Mazur and Mark D. Somers. 1999. Peer Instruction: A User’s Manual. Amer-
ican Journal of Physics 67, 4 (apr 1999), 359–360. https://doi.org/10.1119/1.19265

[27] I. T. Chan Mow. 2012. Analyses of student programming errors in Java program-
ming courses. Journal of Emerging Trends in Computing and Information Sciences
3, 5 (2012), 739–749.

[28] Lorelli S. Nowell, Jill M. Norris, Deborah E.White, and Nancy J. Moules. 2017. The-
matic Analysis: Striving to Meet the Trustworthiness Criteria. International Jour-
nal of Qualitative Methods 16, 1 (2017). https://doi.org/10.1177/1609406917733847

[29] James Oigara and Jared Keengwe. 2011. Students’ perceptions of clickers as
an instructional tool to promote active learning. Education and Information
Technologies 18, 1 (2011), 15–28. https://doi.org/10.1007/s10639-011-9173-9

[30] Archana Pradhan, Dina Sparano, and Cande V. Ananth. 2005. The influence of
an audience response system on knowledge retention: An application to resident
education. AJOG 193, 5 (2005), 1827–1830. https://doi.org/10.1016/j.ajog.2005.07.
075

[31] Steven Robbins. 2011. Beyond clickers. In Proc. SIGCSE. ACM. https://doi.org/10.
1145/1953163.1953347

[32] Marc J. Rubin. 2013. The Effectiveness of Live-Coding to Teach Introductory
Programming. In Proc. SIGCSE. Association for Computing Machinery, New York,
NY, USA, 651–656. https://doi.org/10.1145/2445196.2445388

[33] Stefan Seegerer and Ralf Romeike. 2018. Goals, Topics and Tools of Computer
Science for All University or College Courses. In Proc. SIGCSE. ACM. https:
//doi.org/10.1145/3159450.3162237

[34] Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. ACM. https:
//doi.org/10.1145/3430665.3456382

[35] Sven Strickroth. [n. d.]. Automatic Grouping of Common Errors in Programming
Exercises. (under review). https://www.tel.ifi.lmu.de/software/gate/, the full
reference will be posted there, also the source code of GATE is available there.

[36] Sven Strickroth. 2023. Does Peer Code Review Change My Mind on My Sub-
mission?. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1 (ITiCSE 2023). Association for Computing
Machinery, 498–504. https://doi.org/10.1145/3587102.3588802

[37] Sven Strickroth. 2023. Towards Live Coding and Instant Feedback on Common
Issues in Large Lectures. In Responsive and Sustainable Educational Futures. 18th
European Conference on Technology Enhanced Learning, EC-TEL 2023, Aveiro,
Portugal, September 4–8, 2023, Proceedings. Springer Nature Switzerland, 662–667.
https://doi.org/10.1007/978-3-031-42682-7_58

[38] Sven Strickroth and François Bry. 2022. The Future of Higher Education is Social
and Personalized! Experience Report and Perspectives. In Proceedings of the 14th
International Conference on Computer Supported Education – Volume 1: CSEDU,
Vol. 1. INSTICC, SciTePress, 389–396. https://doi.org/10.5220/0011087700003182

[39] Sven Strickroth and Florian Holzinger. 2022. Supporting the Semi-Automatic
Feedback Provisioning on Programming Assignments. In Methodologies and
Intelligent Systems for Technology Enhanced Learning, 12th International Con-
ference (MIS4TEL’22). Springer International Publishing, Cham, 13–19. https:
//doi.org/10.1007/978-3-031-20617-7_3

[40] Sven Strickroth, Hannes Olivier, and Niels Pinkwart. 2011. Das GATE-System:
Qualitätssteigerung durch Selbsttests für Studenten bei der Onlineabgabe von
Übungsaufgaben?. In Proc. DeLFI. 115–126. https://dl.gi.de/handle/20.500.12116/
4740

[41] Sven Strickroth and Michael Striewe. 2022. Building a Corpus of Task-based
Grading and Feedback Systems for Learning and Teaching Programming. In-
ternational Journal of Engineering Pedagogy (iJEP) 12, 5 (Nov. 2022), 26–41.
https://doi.org/10.3991/ijep.v12i5.31283

[42] Jonas Vetterick, Martin Garbe, and Clemens Cap. 2013. Tweedback: A Live
Feedback System for Large Audiences. In Proc. CSEDU. https://doi.org/10.5220/
0004414501940198

[43] Daniela Zehetmeier, Axel Böttcher, Anne Brüggemann-Klein, and Veronika
Thurner. 2015. Development of a Classification Scheme for Errors Observed in
the Process of Computer Programming Education. In HEAd'15. Conference on
Higher Education Advances. https://doi.org/10.4995/head15.2015.356

https://doi.org/10.1145/3328778.3366862
https://www.learntechlib.org/primary/p/24328/
https://doi.org/10.1080/01443410.2011.638619
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.3402/rlt.v11i3.11284
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1145/3330430.3333627
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1109/EDUCON.2016.7474580
https://doi.org/10.1109/EDUCON.2016.7474580
https://doi.org/10.1007/s10956-006-0360-1
https://doi.org/10.1007/s10956-006-0360-1
https://doi.org/10.3102/003465430298487
https://doi.org/10.1145/1596655.1596657
https://doi.org/10.3991/ijep.v9i4.10201
https://doi.org/10.1016/b978-0-12-823410-5.00015-2
https://doi.org/10.1016/b978-0-12-823410-5.00015-2
https://doi.org/10.1002/ase.184
https://doi.org/10.1002/ase.184
https://doi.org/10.1109/fie.2005.1611967
https://doi.org/10.1109/fie.2005.1611967
https://doi.org/10.21105/jose.00049
https://doi.org/10.1016/j.compedu.2009.05.001
https://doi.org/10.1145/3231711
http://ceur-ws.org/Vol-2092/paper11.pdf
http://ceur-ws.org/Vol-2092/paper11.pdf
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1007/978-3-030-35758-0_19
https://doi.org/10.3991/ijep.v9i2.10163
https://doi.org/10.1119/1.19265
https://doi.org/10.1177/1609406917733847
https://doi.org/10.1007/s10639-011-9173-9
https://doi.org/10.1016/j.ajog.2005.07.075
https://doi.org/10.1016/j.ajog.2005.07.075
https://doi.org/10.1145/1953163.1953347
https://doi.org/10.1145/1953163.1953347
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/3159450.3162237
https://doi.org/10.1145/3159450.3162237
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3430665.3456382
https://www.tel.ifi.lmu.de/software/gate/
https://doi.org/10.1145/3587102.3588802
https://doi.org/10.1007/978-3-031-42682-7_58
https://doi.org/10.5220/0011087700003182
https://doi.org/10.1007/978-3-031-20617-7_3
https://doi.org/10.1007/978-3-031-20617-7_3
https://dl.gi.de/handle/20.500.12116/4740
https://dl.gi.de/handle/20.500.12116/4740
https://doi.org/10.3991/ijep.v12i5.31283
https://doi.org/10.5220/0004414501940198
https://doi.org/10.5220/0004414501940198
https://doi.org/10.4995/head15.2015.356

	Abstract
	1 Motivation
	2 Related Research
	3 Goal and Teaching Scenario
	4 Extending the GATE system
	5 Experiences and Lessons Learned
	5.1 The Setting
	5.2 Lecturer's Experiences
	5.3 Students' Questionnaire Evaluation

	6 Discussion
	7 Conclusions and Future Work
	References

