
Exploring Students’ Self-Confidence in Their Programming
Solutions
Sven Strickroth

sven.strickroth@ifi.lmu.de
LMU Munich

Munich, Germany

ABSTRACT
Learning programming is perceived as hard by many students.
To support students, many e-assessment and intelligent tutoring
systems have been developed. These systems can automatically
evaluate student submissions and provide feedback. Despite com-
prehensive research on feedback modalities, little is known about
students’ confidence in the correctness of their submissions when
requesting feedback. Also, educators hope that students get more
confident and that automatically provided feedback helps students
to improve and better self-assess their work. In this paper, first-
semester students are asked about their confidence in passing a
requested syntax or function test before the test results are revealed
to them. Students can request feedback from each of the two pro-
vided test types twice in arbitrary order. The self-rated confidence,
test outcomes, time needed to enter the confidence, and correla-
tions are analyzed in detail. The results show that the majority of
students has a high confidence in their submitted work. However,
students frequently over-estimate the correctness and only few
under-estimate it. There is a correlation between students’ confi-
dence in their submissions and their actual performance, but this
cannot be used to make reliable predictions. The test pass rate for
highly confident students is higher for syntax tests than for func-
tion tests and students need more time for entering their confidence
for syntax than for function tests. Over the semester, the self-rated
confidence decreases. When tests are reattempted, both correctness
and self-assessment abilities show improvement.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
programming education, confidence, formative assessment, self-
assessment, learning analytics

ACM Reference Format:
Sven Strickroth. 2024. Exploring Students’ Self-Confidence in Their Pro-
gramming Solutions. In Proceedings of the 2024 Innovation and Technology in
Computer Science Education V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.3653589

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024), July
8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653589.

1 INTRODUCTION
Learning programming is an integral part of computer science ed-
ucation. For novices, however, programming is often perceived
as hard [28]. Many competencies such as problem solving, com-
putational thinking, and testing need to be mastered at the same
time [12]. Learning programming requires practice and, therefore,
exercises in which programming assignments are solved are usu-
ally an inherent part of programming courses. To support students,
timely formative feedback is a driving factor for success [16]. Many
e-assessment systems and Intelligent Tutoring Systems (ITS) have
been developed to support students and educators [21, 36]. These
systems can provide timely automatic generated feedback 24/7. The
usage of such systems is sometimes referred to as (a variant of) self-
assessment (e. g., [7, 10, 20]). Another variant of self-assessment
is where students are asked to self-grade or self-correct their so-
lution based on instructor defined criteria (e. g., [15]). In general,
self-assessment enables students to get an insight on their own
learning process and, in this context, to incrementally improve
their solutions [7, 15]. Hence, self-assessment is a very desired skill.

There are, however, drawbacks of these automated systems. Stu-
dents may misuse the feedback features or adopt unintended work-
flows if no special measures are taken: Students may apply undi-
rected try-and-error strategies to pass the tests (cf. [5, 32]), use a
system as an online compiler instead of an integrated development
environment (IDE; e. g., [31]), or are not encouraged any more to
test their programs on their own before submitting (cf. [13]).

An often overlooked aspect is students’ confidence in their solu-
tions. The aim of this research is to analyze student’s confidence
in their solution and their actual performance on programming
assignments. Students are explicitly asked about their confidence
in the correctness of their submission when they request automati-
cally generated feedback before the result is shown to them. Hence,
students are requested to reflect on their solution and receive imme-
diate feedback on both the correctness of their submission against
the specification and implicitly on their estimation of the correct-
ness of their submission. The investigated research questions are:

• RQ1: How confident are students in the correctness of their
submitted work?

• RQ2: How does the self-rated confidence correlate with the
actual performance?

• RQ3: Are there differences over time, between two provided
types of tests, failed and passed tests, or tests requested twice,
and how long do students need to enter their confidence?

In this context, the self-rated confidence can be seen as the level
of optimism students have in their performance after working on
a particular task. Therefore, it is expected that this will implicitly
include the student’s assessment that they have adequately tested

https://orcid.org/0000-0002-9647-300X
https://doi.org/10.1145/3649217.3653589
https://doi.org/10.1145/3649217.3653589
© Sven Strickroth 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2024 Innovation and Technology in Computer Science Education
V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653589.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

their solution, even if they were not given any specific criteria for
testing other than the assignment specification.

In general, self-confidence is trust in one’s own abilities and re-
lates to “self-efficacy”, a generalized concept defined by Bandura [6].
This concept describes an individual’s confidence in their ability
to take the actions required to achieve particular objectives [6].
Andrade [4] argues that formative self-assessments are a form of
self-efficacy. Furthermore, being able to monitor one’s own process
and abilities, is an important factor for self-regulated learning [37].

The insights gained from answering these research questions are
twofold: They contribute to the understanding of students’ meta-
cognitive skills and testing strategies in the context of learning
programming. Furthermore, they can influence pedagogical strate-
gies about when and how to address students’ problems and help
optimize e-assessment systems.

2 RELATED RESEARCH
Many automated e-assessment systems and ITS have been devel-
oped to support teaching [21, 25, 36]. Overall, many systems have
shown to support students and their learning [3] – even very lim-
ited feedback can be helpful [35]. There are, however, differences in
how these systems operate: ITS aim to be adaptive, mimic a human
tutor, and provide personalized step by step help [3, 25] whereas e-
assessment systems strive more towards to evaluate, test, or assess
learner’s competences, but can also provide formative feedback.
There are two modes of operation: First, there are systems that au-
tomatically start the assessment and provide feedback to students
immediately after uploading (e. g., JACK [14]). Second, there are
submission systems that separate the upload from testing/feedback
such as uploads (even invalid code) are possible until the deadline
and then feedback is provided or feedback can be requested on-
demand (e. g., GATE [35]). Particularly in the latter case, feedback
capabilities can be easily limited to avoid abusing the system. Still,
students might “delegate” the testing to the systems. It is unclear,
how the test capabilities are used in such systems, i. e., at what
stages students upload their work, or request feedback (e. g., when
they got stuck, or want a feedback on the partial/final correctness,
cf. [18]). Typically, existing systems provide feedback but do not
require students to state their confidence in their solution.

Formative self-assessments in which students self-evaluate their
work, have shown to have positive effects on the quality of the
results [4, 15, 30]. Often specific criteria for evaluating a solution
are given [4]. Haake et al. [15] investigated the self-assessment
quality using teacher-provided criteria on open-ended questions in
a computer science course. They found that assignments with a low
or moderate extent are easier to self-assess and that very specific
criteria can aid the assessment [15]. Alaoutinen and Smolander
[2] developed a more generic questionnaire for students to self-
assess their competences in programming courses. Their results
indicate that students are quite accurate in assessing their knowl-
edge and found a statistically significant correlation between the
self-assessments and the exam results [2]. Strickroth [33] compared
self-assessments in a programming course directly before and after
doing peer reviews and found that the self-assessments get more
accurate after reviewing fellow students’ solutions [33]. A common
issue is, however, that students often over or under-estimate their

skills [2, 9, 15, 26]. Furthermore, there are contradictory results on
whether students improve their accuracy over time or whether aca-
demically high performing students are better than low performing
students (e. g., [9, 15, 26]). Providing detailed tests or checklists to
students, also relieves them from thinking on the tests themselves.
Furthermore, these self-assessments, however, do not provide any
insights into the confidence of the students, and (by design) students
do not receive detailed feedback on their solution.

(Self-)confidence was investigated in several studies: Layman
et al. [24] found, on a course – not task – level, that students’
self-confidence in their programming skills correlates with their
overall performance. Ahsan et al. [1] investigated whether self-
rated confidence is a predictor for the performance in programming
comprehension tasks (multiple choice questions and a five-point
confidence scale). The results indicate that the confidence levels are
quite high for all students and there is no difference between high
and low performing students. The confidence levels are only weakly
correlated to performance [1]. The authors suggest that students
should periodically assess their confidence levels so that they get
an accurate view on their abilities. It remains unclear, however,
whether or how the correctness of the self-rated confidence was fed
back to the students in that study. A study on model comprehension
tasks by Daun et al. [11] found that confidence was a good predictor
for the correctness of the solutions. However, these studies may
not be comparable to programming assignments. There also is
research on factors contributing to self-efficacy in the context of
CS education (e. g., [22]) but this is out of scope for this research.

Summing up, this research addresses the outlined research gaps
on programming assignments. The ability to correctly assess one’s
own programming skills and performance is very important for
learning, particularly by contrasting the internal assessment with
external feedback [29]. Automatic e-assessment systems can sup-
port this, however, they may encourage students to “delegate” the
assessment to the systems while self-assessments cannot help stuck
students and take the task of “designing” tests from the students.
The results on confidence being a predictor for performance and
accuracy on self-assessments are inconclusive. This is addressed
in this research by explicitly asking students for their confidence
in their solution and mirroring back the actual correctness. Fur-
thermore, the entered confidence is contrasted to the actual test
outcome, and the time needed to enter the confidence, differences
between test types as well as trends over time are investigated.

3 SETTING & METHODOLOGY
This study was conducted in the context of a first-semester introduc-
tory programming course (using Java) at LMUMunich, Germany in
winter semester 2021/22. Approx. 900 students with computer sci-
ence as a major or minor were enrolled in that course. Throughout
the semester, 10 assignment sheets were distributed to the students.
Eight of the assignment sheets contained at least one programming
task. Working on the assignment sheets was voluntary. There also
was no individual correction of students’ solutions, but students
could upload their solutions to the e-assessment system GATE
[34, 35] and request automatically generated feedback. Addition-
ally, solutions and questions were discussed in exercise sessions
held by student teaching assistants in the week after the deadline.



Exploring Students’ Self-Confidence in Their Programming Solutions ITiCSE 2024, July 8–10, 2024, Milan, Italy

GATE is designed as a submission system where students can
upload new solution attempts without any restrictions until the
deadline is reached. After the initial submission, syntax and (black
box) function tests can be offered to the students. Each configured
test can be requested by the students in arbitrary order. GATE
allows educators to limit the number of times a student can request
a test to prevent system abuse and to encourage the students to test
their submissions themselves, plan when to use the offered tests,
and not to fully rely on the system.

In the course, two tests were offered for every assignment (if
possible), one syntax test and one function test which could be
requested at most twice each. Before presenting the test results to
the students, they were asked “How confident are you that the test
will pass?”. An HTML slider with values from 1 to 100 was used
that could be freely positioned. The ends were labeled with “very
uncertain” and “very certain”. The default value was 50. If students
did not interact with the slider, an alert box was shown that kindly
asked to actually rate their confidence. Still, it was possible that
students did not interact with the slider and just submitted the form
to see their test results. These cases will not be considered in the
detail analyses. For the analysis, 5 assignments from 5 different
weeks are considered (cf. Table 1). One syntax test and one function
test were offered for each task. The other assignments are not
comparable (e. g., no function tests possible due to design freedoms).

The dataset contains all (intermediate) submissions of the stu-
dents and the requested tests including meta data such as the time-
stamp, the test result, the entered confidence, an indicator whether
the students were reminded to enter their confidence, and the time
needed to proceed to the results page (i. e., enter their confidence). In
the following results section, the self-rated confidence, correlations
with the actual pass rate, time needed to enter the confidence are
investigated across all tasks, but also differences between the two
types of tests, failed and passed tests and over time are explored.

Non-parametric tests are used in the analysis because they do
not require e. g. normal distributed data (cf. [8, 19]). Typically, these
tests are stricter than their parametric counterparts [19]. For binary
(dichotomous) data and dependent samples, the McNemar test is
used as the significance test (cf. [8, 19]). For non dichotomous data,
the Mann-Whitney UTest (independent) and the Wilcoxon rank
sign test (dependent samples) are used.

All students were explicitly asked whether they voluntarily agree
that their anonymized submissions and log data can be used for
research. Only students who agreed were asked for their confidence.
Students were able to give consent throughout the whole semester,
so a small number of students joined late. Data from 770 submissions
by 371 different students are included in the dataset.

4 RESULTS
Overall, 2023 tests were requested by the students (952 syntax tests
and 1071 function tests). In 92 % of the tests, the students entered a
self-rated confidence (𝑛 = 1867) – in 93 % of these cases (𝑛 = 1700)
without being reminded to do so.

4.1 Analysis of the Self-Rated Confidence
Figure 1 shows a (logarithmic) histogram of all the confidence
values entered; most of the values are for the extreme values 100, 1,

1
1

10

10

20 30 40
Self-Rated Confidence

50 60 70 80 90 100

100

1000

Figure 1: Histogram of all confidence values entered

and 50. In the following, the 156 cases (71 syntax and 85 function
tests) where no confidence was entered are excluded. The median
(m) self-rated confidence is 100, and the arithmetic mean (𝑥 ) is 84.

Students requested about 100 more function tests than syntax
tests (cf. lines 2–3 in Table 1). Although the median self-rated con-
fidence is 100 for both test types, there is a statistically significant
difference between syntax 𝑥 = 87 and function tests 𝑥 = 81 (UTest:
𝑍 = 11.304, 𝑝 < .001) with a moderate effect size (𝑟 = .25, cf. [27]).

Over the semester, the entered self-rated confidences decrease
(statistically significant with a small negative correlation of the
confidence with the week number in the semester, Spearman’s
𝜌 (1865) = −.154, 𝑝 < .001). The maximum confidence entered is
100 for all tasks. For the first four tasks, the minimum confidence
entered is 1 and the median is 100. For the fifth task, the minimum
is 55 for the syntax test and 19 for the function test, and the overall
median is 97. The last 4 lines in Table 1 show no difference in the
median and mean confidence for the syntax tests of task 1 and
task 5. However, the median and the mean confidence are lower
for the fifth task. This difference is statistically significant (UTest:
𝑍 = −4.668, 𝑝 < .001) with a moderate effect size of 𝑟 = .25.

4.2 Test Result and the Self-Rated Confidence
The majority of the requested tests passed (69 %); 89 % of the syntax
and 51 % of the function tests (cf. lines 1–3 in Table 1). This difference
between the two types of tests is statistically significant (UTest:
𝑍 = −17.413, 𝑝 = .001) with a moderate to large effect size of 𝑟 = .4.

Overall (line 1 in Table 1), the majority of students was highly
confident that they would pass the requested test. However, the
“𝐶 = 100” column shows that only 78 % of the requested tests passed
for students who were most confident; 93 % for syntax tests and
61 % for function tests. Contrast this with the “𝐶 = 1” column where
about 2 % of the students entered the lowest possible confidence
but passed the tests in 34% of the cases overall, 64 % of the cases
for the syntax tests, and only 8 % of the cases for the function tests.

Looking from the “other side”, lines 4–5 in Table 1 show that
across all tests that passed, 86 % of the students entered a high
confidence and 66% entered the highest confidence. Only 8% of
the students entered a low confidence. Across all failed tests, 69 %
of the students entered a high confidence, 42 % entered the highest
confidence, and only 16 % a low confidence. Overall, the self-rated
confidence is statistically significantly higher for tests that actually



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

Table 1: Overview of the tasks, test types, and self-rated confidence (T: median/mean time needed for entering the confidence,
C: median/mean confidence, R: test pass ratio; last columns: 𝑛 cases in a range with a specific confidence and test pass ratio R)

Aspect n T C R 𝐶 = 1 𝐶 = 100 𝐶 < 33 33 ≤ 𝐶 ≤ 66 𝐶 > 66
m 𝑥 m 𝑥 n R n R n R n R n R

All Tasks 1867 4 4.5 100 84 .69 48 .34 1100 .78 142 .36 147 .37 1491 .74
Only Syntax Tests 881 4 5.1 100 87 .89 22 .64 572 .93 57 .63 60 .65 733 .91
Only Function Tests 986 3 3.9 100 81 .51 26 .08 528 .61 85 .18 87 .18 758 .57
All Passed Tests 1284 3 4.6 100 89 1 16 1 853 1 51 1 55 1 1101 1
All Failed Tests 583 3 4.3 86 73 .00 32 .00 247 .00 91 .00 92 .00 390 .00
Task 1: Nested loops 616 3 5.8 100 91 .85 16 .50 448 .90 29 .48 30 .50 556 .87
Task 2: Reverse Array content 453 3 4.4 100 78 .60 15 .20 230 .69 53 .34 55 .36 314 .66
Task 3: Abstr. classes & polymorph. 389 3 3.8 100 81 .49 14 .29 208 .56 32 .22 33 .21 295 .53
Task 4: Recursion 318 3 3.4 100 83 .75 3 .34 172 .83 26 .46 27 .48 254 .80
Task 5: Using an external library 91 3 3.1 97 85 .69 0 – 42 .76 2 .00 17 .76 72 .69
Task 1 Only Syntax Tests 295 6 7.2 100 90 .91 10 .70 220 .95 16 .69 15 .67 264 .93
Task 1 Only Function Tests 321 3 4.5 100 91 .79 6 .17 228 .86 13 .23 16 .88 292 .82
Task 5 Only Syntax Tests 42 3 3.2 100 90 .98 0 – 23 .96 0 – 7 1 35 .97
Task 5 Only Function Tests 49 3 3.0 85 81 .45 0 – 19 .53 2 .00 10 .56 37 .43

passed (𝑚 = 100, 𝑥 = 89) than for those that failed (𝑚 = 86, 𝑥 = 73;
UTest: 𝑍 = 11.304, 𝑝 < .001) with a moderate effect size of 𝑟 = .26.

Over the semester, the test pass rates decrease (statistically sig-
nificant with a small negative correlation with the week number in
the semester, Spearman’s 𝜌 (1865) = −.152, 𝑝 < .001).

The last six columns in Table 1 show the pass rates for different
confidence ranges. In the following, self-rated confidences below
33 are referred to as low, between 33 and 66 as middle, and above
66 as high. Over all tasks and for the syntax as well as the function
tests, the number of students choosing a low or middle confidence
is about the same (≈ 6 to 8 %), except for task 5 where 2 % and 19 %
entered a low respective middle confidence. Also, the pass rates
are always about the same for both ranges or higher for the middle
range, except for task 3 and the detail analysis of the function test
of task 1. Notable are the high pass rates for the syntax tests for
both of these ranges (63 and 65%), and the same low pass rates
of 18 % for the function tests. Salient is task 5 where the pass rate
for the medium range is significantly higher than for both the low
confident and the high confident students. Finally, the pass rates
are always significantly higher for the high confident students than
for the low and middle confident students, except for task 5, and the
detail analyses of function tests of task 1 and 5.When comparing the
pass rates of the three classes (line 1 in Table 1), all are statistically
significantly different (UTest, 𝑝 < .001) with small effect sizes (low
vs. middle: 𝑟 = .20, middle vs. high: 𝑟 = .13, low vs. high: 𝑟 = .23).

Finally, the syntax and function tests are compared individually
for the first and last task (last four lines in Table 1). The pass rate for
the syntax test was already quite high at 91 % for the first task and
increased to 98%. Also, the test pass rate for medium and highly
confident students increased and the number of less confident stu-
dents decreased. The picture is different however for the function
tests: Most students are still very confident to pass the tests, but
the overall pass rate decreases from 79 to 45% as well as the pass
rate for highly confident students decreases from 82 to 43 %. In all
two cases where students entered a low confidence, the tests failed.

Overall, there is a positive correlation between the confidence
and the actual test result with a moderate effect size (cf. Table 2).
The correlation is slighter stronger for the function test. Over the
semester, correlations with small to moderate effect sizes could be
found for all tasks except for the last task where it is not significant.
The effect size seems to be strongest for the first task and to decrease
over the semester.

Table 2: Spearman correlations between the confidence and
passing a test (ES: effect size: small or moderate, cf. [27])

Aspect n 𝜌 p ES
All Tasks 1867 .262 <.001 m
Only Syntax Tests 881 .211 <.001 s
Only Function Tests 986 .257 <.001 m
Task 1 616 .254 <.001 m
Task 2 453 .242 <.001 m
Task 3 389 .191 <.001 s
Task 4 318 .231 <.001 s
Task 5 91 .189 .073 (s)
Task 1 Only Syntax Tests 295 .257 <.001 m
Task 1 Only Function Tests 321 .257 <.001 m
Task 5 Only Syntax Tests 42 -.134 .40 (s)
Task 5 Only Function Tests 49 .141 .34 (s)

4.3 Analysis of Tests Requested Twice
In 513 cases, students requested the same type of test for an assign-
ment twice (cf. Table 3). No confidence for both tests was entered
in 21 cases, only for the first test in 18, and only for the last test in
22 cases – these are excluded. Hence, 452 cases are analyzed here.

Overall, most of the first tests failed (𝑥 = .33) and most of the
second tests passed (𝑥 = .71). This difference is statistically signifi-
cant (McNemar: 𝑝 < .001) with a large effect size (Cohen’s𝜔 = .426,
cf. [27]). The majority of students could fix their error(s). There



Exploring Students’ Self-Confidence in Their Programming Solutions ITiCSE 2024, July 8–10, 2024, Milan, Italy

Table 3: Comparison of tests executed twice on an assignment by the very same student (for the legend see Table 1)

Test n T C R 𝐶 = 1 𝐶 = 100 𝐶 < 33 33 ≤ 𝐶 ≤ 66 𝐶 > 66
m 𝑥 m 𝑥 n R n R n R n R n R

All 1st 452 3 4.2 100 81 .33 14 .29 233 .40 45 .24 65 .32 342 .35
All 2nd 452 3 3.5 100 85 .71 9 .22 274 .79 30 .30 62 .53 360 .77
Syntax 1st 188 4 5.1 100 83 .71 5 .60 104 .79 18 .56 26 .81 144 .72
Syntax 2nd 188 3 3.1 100 89 .91 3 .67 133 .92 10 .70 15 .93 163 .93
Function 1st 264 3 3.6 96.5 79 .06 9 .11 129 .09 27 .04 39 .00 198 .08
Function 2nd 264 3 3.8 100 82 .56 6 .00 141 .67 20 .10 47 .40 197 .64

also is a statistically significant difference between the first entered
confidence (𝑚 = 93, 𝑥 = 77, [1,100]) and second entered confidence
(𝑚 = 100, 𝑥 = 82, [1,100]; Wilcoxon sign rank test, 𝑍 = −3.481,
𝑝 < .001) with a small effect size of 𝑟 = .16. The percentage of
highly confident students who failed the second test decreased (still
23 %), but the percentage of low confident students who passed it
increased (from 24% to 30 %). For both tests, there are statistically
significant correlations between the entered confidence and the
pass rate with a larger effect size for the second test (cf. Table 4).

Table 4: Spearman correlations between the entered confi-
dence and passing a test for tests requested twice (ES: effect
size: very small, small or moderate, cf. [27])

Test n 𝜌 p ES
All 1st tests 452 .152 .001 s
All 2nd tests 452 .272 <.001 m
Syntax 1st tests 188 .168 .021 s
Syntax 2nd tests 188 .037 .613 (vs)
Function 1st tests 264 .129 .036 s
Function 2nd tests 264 .301 <.001 m

When analysing the two types of tests individually, most first
syntax tests (71 %) and nearly all second tests (91 %) passed. 68
students increased their confidence, and only 22 decreased it of
which only 2 could not fix their error between the two tests. Only for
the first syntax test, but not for the second, there is a statistically
significant correlation between confidence and pass rate with a
small effect size (cf. Table 4). For the function tests it is noticeable
that nearly all first tests failed (about 94 %) and for the second test
still 44 % failed. No new errors were introduced after the first test
passed. There are more students (𝑛 = 90) who have increased their
confidence than students (𝑛 = 68) who have decreased it. For both
function tests, there is a statistically significant correlation between
confidence and pass rate. The effect size is small for the first test
but moderate for the second test (cf. Table 4). The differences in
the test result between the first and second test are statistically
significant for both types of tests (McNemar: both 𝑝 < .001), but
the effect size is larger for the syntax test (Cohen’s 𝜔 = .234 vs.
𝜔 = .354). However, the difference in the self-rated confidence
between the first and second test is only statistically significant for
the syntax tests (Wilcoxon sign rank test, 𝑍 = −4.162, 𝑝 < .001)
with a moderate effect size of 𝑟 = .3 and not for the function tests
(𝑍 = −1.363, 𝑝 = .173).

4.4 Time Needed to Enter the Confidence
Overall, the median time needed for entering the confidence is 4 s
(𝑥 = 4.5 s). The time needed decreases over the semester. Still, there
are statistically significant differences on the time needed between
the syntax 𝑥 = 5.1 and function 𝑥 = 3.9 test (UTest: 𝑍 = −10.285,
𝑝 < .001) with a moderate effect size of 𝑟 = .24. Interestingly, it
also took the students minimal longer to enter their confidence for
tests that passed 𝑥 = 4.6 than for tests that failed 𝑥 = 4.3 (UTest:
𝑍 = 2.840, 𝑝 = .005, very small effect size of 𝑟 = .07). While there
is a very small positive correlation between the time needed and
passing a test (Spearman’s 𝜌 (1865) = .066, 𝑝 = .004), there is a
negative correlation between the time needed and the self-rated
confidence (𝜌 (1865) = −.279, 𝑝 < .001) with a moderate effect size.

When comparing the syntax tests and the function tests re-
quested twice, there is a statistically significant difference between
the time needed for entering the first (𝑚 = 3 s, 𝑥 = 4.5 s) and second
confidence (𝑚 = 3 s, 𝑥 = 3.7 s; UTest: 𝑍 = −5.858, 𝑝 < .001) with a
moderate effect size of 𝑟 = .28.

5 DISCUSSION
The results show that most students entered a high confidence in
their work – even 59% of the students entered the highest confi-
dence – and only about 8 % entered a low confidence (RQ1). This
suggests that most students expect to pass the tests and the majority
of students do not seem to request a test for a known incomplete
solution e. g. to get to know the test cases.

Overall, there is a moderate positive correlation between the
self-rated confidence and passing a test (RQ2). However, about one-
third of the high-confidence students over-estimate the correctness
of their work (about 21 % of all students) and about one-third of the
low-confidence students under-estimate the correctness of their
work (about 3 % of all students). This is in line with related research
(e. g., [1, 2, 9, 15, 26, 33]). Similar results with an accuracy of about
60–75% have also been reported for self- and peer-assessments
(e. g., [17, 33]). One reason could be the Dunning-Kruger effect
[23], which states that less competent people over-estimate their
competence without being aware of it. Narciss [29] argues that
it is particularly important to explicitly contrast internal assess-
ment with external feedback as done in this study. This encourages
students to reflect on their perceived confidence and actual per-
formance and should be conducted regularly. Since there is only
a moderate correlation between self-rated confidence and actual
performance, it cannot be used directly for predictions. This is con-
sistent with a study on program comprehension [1]. Nevertheless,



ITiCSE 2024, July 8–10, 2024, Milan, Italy Sven Strickroth

correct submissions receive a higher self-rated confidence than
incorrect ones.

Now differences over time, for tests requested twice, and be-
tween the two types of tests are discussed (RQ3). The decreasing
number of submissions over the semester is normal. At the same
time, the self-rated confidence decreased slightly over the semester.
This may reflect the experienced complexity of the assignments
or indicates students’ growing awareness of possible edge cases in
the assignments. Also, the pass rates for high-confidence students
decreased. This was contradictory to the expectation of the author.
One reason may be that the assignments got more complex quicker
than (test) competencies were developed. The decreasing ratio of
passed tests supports this. Still, between two requested tests of the
same type, most students were able to correct their submission and
the pass ratio for high confident students improved. This result is
not surprising, but it is good to see that the empirical data supports
this assumption. However, the pass rate for low confident students
also increased. This is counter intuitive and may be a way to (bet-
ter) identify students needing special support. Overall, the the pass
rates for high confident students are higher for syntax than for
function tests and increase less between tests requested twice. One
reason for this may be that after the first lectures not much new
syntax is introduced and students become more familiar with an
IDE. Task 3 supports this assumption, as the introduction of inheri-
tance with its associated syntax decreased the syntax pass rate once
for this task. Towards the end of the semester, failing syntax tests of
high-confidence students underline the need for special support for
these students. Hence, asking for self-rated confidence may help to
identify these students. Interestingly, syntax tests are requested at
a high rate throughout the whole semester, even though students
are expected to use an IDE (also reported in [35]). Function tests
may fail more often (especially on the test requested first), because
students do not yet know all the test/edge cases. This could explain
the massive increase in the pass rate for high-confidence students,
however, the pass rate of only 43 % is surprising for the last task.

Andrade [4] argues that one should not only focus on accuracy
for self-assessments. This is especially true in this research. Is it
enough to be able to correctly predict the test result in advance,
i. e., to have low confidence and actually fail the test, but not being
able to correct the error? Unexpected failures (i. e., high confidence
but failing a test) seem to be mostly caused by “unexpected” edge
cases or minor errors and were fixable for most students, while
expected failures may be mostly caused by lack of knowledge or
misconceptions. Hence, educators should pay attention to identify
such students. Fortunately, only about 8 % of the students entered
a low confidence. Further research is needed, including feedback
strategies that consider an (over or under-estimated) self-rated
confidence in order to better address the needs of the learners.

Most students entered their confidence within 3–6 seconds. This
indicates that students did not take or need much time to think
about their confidence once they had decided to request a test. The
decrease in time over the semester and for the second test of tests
requested twice is expected as students become more familiar with
the whole process. However, it is noteworthy and surprising that
students need (slightly) more time to enter their confidence for both
the syntax tests and the tests that actually passed. Especially for
syntax tests, the result should already be known by using an IDE.

6 LIMITATIONS & THREATS TO VALIDITY
The analysis is based on a single course in one university in a spe-
cific setting where tests could be requested maximum twice. Also,
some student may have cooperated to get more than 4 tests. There
are two levels of self-selection: First, only students who voluntary
submitted solutions on the systems are included in the dataset.
Hence, there might be a bias towards for more engaged students.
There could, however, also be a bias in the opposite direction that
high performing students did not submit their solutions for as “too
easy” perceived tasks. Secondly, only students who have explicitly
consented to the use of their data were considered (≈ 80 % agreed).

The HTML slider may be seen as not optimal, since a default
value was given. However, the slider was chosen to allow students
to freely choose a confidence and not to use pre-defined ranges in
order to be able to investigate chosen values and smaller changes.

Only a quantitative analysis was conducted. The function tests
may be too strict in some cases and may even fail for minor errors
such as typos in the output. This may lower the level of over-
estimation but it should not have a significant impact on the results
as multiple assignments are analyzed and a wrong output which
does not fulfill the assignment specification is strictly speaking not
fully correct. For ruling this completely out, an in-depth qualitative
analysis of the submissions and test results would be necessary.

7 CONCLUSIONS AND OUTLOOK
Students were asked by the e-assessment system GATE about their
confidence in passing a requested test before its result was revealed
to them. The results show that students have a high confidence in
their submissions and often over-estimate their correctness. Also,
few students under-estimate their correctness. There is a moderate
correlation between the self-rated confidence and the actual perfor-
mance but this cannot be used for reliable predictions. The test pass
rate for highly confident students is higher for syntax tests than
for function tests and students need more time for entering their
confidence for syntax than for function tests. Over the semester,
the self-rated confidence decreases. When tests are reattempted,
both correctness and self-assessment abilities seem to improve.

In this study, only a quantitative evaluationwas conductedwhich
cannot reveal reasons for choosing a high or low confidence. Fur-
ther research should investigate how the self-rated confidence, test
behavior, and final correctness of the submissions correlate. In addi-
tion, it would be interesting to investigate feedback strategies based
on the self-rated confidence and the outcome of the tests to better
identify and help struggling students. Here, different feedback may
be provided depending on high/low confidence and passing or fail-
ing a test, e. g. providing code optimizations in the first case and
more basic feedback or additional tasks in the latter case. Further-
more, it might be interesting to see whether there are differences
when the confidence is entered after seeing (some of) the test cases.
Combining criteria-led self-assessments with self-rated confidence
could encourage students to make an explicit estimation before
knowing the criteria. In the context of learning analytics, self-rated
confidence and actual test scores could be used to highlight knowl-
edge gaps and misconceptions for educators, or to visualize test
and confidence history for learners as a (meta-)cognitive aid.



Exploring Students’ Self-Confidence in Their Programming Solutions ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Zubair Ahsan, Unaizah Obaidellah, and Mahmoud Danaee. 2022. Is Self-Rated

Confidence a Predictor for Performance in Programming Comprehension Tasks?
APSIPA Transactions on Signal and Information Processing 11, 1 (2022). https:
//doi.org/10.1561/116.00000041

[2] Satu Alaoutinen and Kari Smolander. 2010. Student self-assessment in a pro-
gramming course using bloom's revised taxonomy. In Proceedings of the fifteenth
annual conference on Innovation and technology in computer science education.
ACM. https://doi.org/10.1145/1822090.1822135

[3] Ali Alkhatlan and Jugal Kalita. 2019. Intelligent Tutoring Systems: A Compre-
hensive Historical Survey with Recent Developments. International Journal
of Computer Applications 181, 43 (mar 2019), 1–20. https://doi.org/10.5120/
ijca2019918451

[4] Heidi L. Andrade. 2019. A Critical Review of Research on Student Self-Assessment.
Frontiers in Education 4 (aug 2019). https://doi.org/10.3389/feduc.2019.00087

[5] Ryan Baker, Jason Walonoski, Neil Heffernan, Ido Roll, Albert Corbett, and
Kenneth Koedinger. 2008. Why students engage in “gaming the system” behavior
in interactive learning environments. Journal of Interactive Learning Research 19,
2 (2008), 185–224.

[6] Albert Bandura. 1986. Social foundations of thought and action. Englewood Cliffs,
NJ 1986, 23-28 (1986).

[7] Bruno Baruque and Álvaro Herrero. 2015. Self-Assessment Web Tool for Java
Programming. In Advances in Intelligent Systems and Computing. Springer Inter-
national Publishing, 583–592. https://doi.org/10.1007/978-3-319-19713-5_51

[8] Ralf Bender, Stefan Lange, and Andreas Ziegler. 2007. Wichtige Signifikanztests.
Deutsche Medizinische Wochenschrift 132 (2007), e24–e25. https://doi.org/10.
1055/s-2007-959034

[9] David Boud, Romy Lawson, and Darrall G. Thompson. 2014. The calibration
of student judgement through self-assessment: disruptive effects of assessment
patterns. Higher Education Research & Development 34, 1 (nov 2014), 45–59.
https://doi.org/10.1080/07294360.2014.934328

[10] Peter Brusilovsky and Sergey Sosnovsky. 2005. Individualized exercises for self-
assessment of programming knowledge. Journal on Educational Resources in
Computing 5, 3 (sep 2005), 6. https://doi.org/10.1145/1163405.1163411

[11] Marian Daun, Jennifer Brings, Patricia Aluko Obe, and Viktoria Stenkova. 2021.
Reliability of self-rated experience and confidence as predictors for students’
performance in software engineering. Empirical Software Engineering 26, 4 (jun
2021). https://doi.org/10.1007/s10664-021-09972-6

[12] Michael Ebert and Markus Ring. 2016. A presentation framework for program-
ming in programing lectures. In Proc. EDUCON. IEEE, 369–374.

[13] Stephen H. Edwards. 2003. Improving student performance by evaluating how
well students test their own programs. Journal on Educational Resources in
Computing 3, 3 (sep 2003), 1. https://doi.org/10.1145/1029994.1029995

[14] Michael Goedicke and Michael Striewe. 2009. A Flexible and Modular Soft-
ware Architecture for Computer Aided Assessments and Automated Mark-
ing. In Proceedings of the First International Conference on Computer Supported
Education. SciTePress - Science and and Technology Publications. https:
//doi.org/10.5220/0001966900540061

[15] Joerg M. Haake, Niels Seidel, Marc Burchart, Heike Karolyi, and Regina
Kasakowskij. 2021. Accuracy of self-assessments in higher education. In DELFI
2021. Gesellschaft für Informatik e.V., Bonn, 97–108.

[16] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Educa-
tional Research 77, 1 (mar 2007), 81–112. https://doi.org/10.3102/003465430298487

[17] Niels Heller and Francois Bry. 2019. Organizing Peer Correction in Tertiary STEM
Education: An Approach and its Evaluation. International Journal of Engineering
Pedagogy (iJEP) 9, 4 (2019), 16–32. https://doi.org/10.3991/ijep.v9i4.10201

[18] Johan Jeuring, Hieke Keuning, Samiha Marwan, Dennis Bouvier, Cruz Izu, Natalie
Kiesler, Teemu Lehtinen, Dominic Lohr, Andrew Peterson, and Sami Sarsa. 2022.
Towards Giving Timely Formative Feedback and Hints to Novice Programmers.
In Proceedings of the 2022 Working Group Reports on Innovation and Technology in
Computer Science Education. ACM. https://doi.org/10.1145/3571785.3574124

[19] Amandeep Kaur and Robin Kumar. 2015. Comparative analysis of parametric
and non-parametric tests. Journal of computer and mathematical sciences 6, 6
(2015), 336–342.

[20] Judy Kay, Lichao Li, and Alan Fekete. 2007. Learner Reflection in Student Self-
Assessment. In Proceedings of the Ninth Australasian Conference on Computing
Education - Volume 66 (Ballarat, Victoria, Australia) (ACE ’07). Australian Com-
puter Society, Inc., AUS, 89–95.

[21] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2018. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1, Article 3 (Sept. 2018), 43 pages. https:
//doi.org/10.1145/3231711

[22] Attila Kovari and Jozsef Katona. 2023. Effect of software development course on
programming self-efficacy. Education and Information Technologies (feb 2023).
https://doi.org/10.1007/s10639-023-11617-8

[23] Justin Kruger and David Dunning. 1999. Unskilled and unaware of it: How diffi-
culties in recognizing one's own incompetence lead to inflated self-assessments.
Journal of Personality and Social Psychology 77, 6 (1999), 1121–1134. https:
//doi.org/10.1037/0022-3514.77.6.1121

[24] L. Layman, L.Williams, J. Osborne, S. Berenson, K. Slaten, andM. Vouk. 2005. How
andWhy Collaborative Software Development Impacts the Software Engineering
Course. In Proceedings Frontiers in Education 35th Annual Conference. IEEE. https:
//doi.org/10.1109/fie.2005.1611964

[25] Nguyen-Thinh Le, Sven Strickroth, Sebastian Gross, and Niels Pinkwart. 2013.
A Review of AI-Supported Tutoring Approaches for Learning Programming. In
Advanced Computational Methods for Knowledge Engineering - Proceedings of
the 1st International Conference on Computer Science, Applied Mathematics and
Applications (ICCSAMA) (Studies in Computational Intelligence, 479). Springer
Verlag, Berlin, Germany, 267–279. https://doi.org/10.1007/978-3-319-00293-4_20

[26] Magdeleine D.N. Lew, W.A.M. Alwis, and Henk G. Schmidt. 2010. Accuracy
of students' self-assessment and their beliefs about its utility. Assessment &
Evaluation in Higher Education 35, 2 (mar 2010), 135–156. https://doi.org/10.
1080/02602930802687737

[27] Andrey Lovakov and Elena R. Agadullina. 2021. Empirically derived guidelines
for effect size interpretation in social psychology. European Journal of Social
Psychology 51, 3 (April 2021), 485–504. https://doi.org/10.1002/ejsp.2752

[28] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-
nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott, Judy
Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic Liter-
ature Review. In Proc. ITiCSE. 55–106. https://doi.org/10.1145/3293881.3295779

[29] Susanne Narciss. 2008. Feedback strategies for interactive learning tasks. Hand-
book of research on educational communications and technology 3 (2008), 125–144.

[30] Zane Olina and Howard J. Sullivan. 2004. Student self-evaluation, teacher evalua-
tion, and learner performance. Educational Technology Research and Development
52, 3 (sep 2004), 5–22. https://doi.org/10.1007/bf02504672

[31] Sven Eric Panitz and Ralf Dörner. 2018. Nicht nur Bestehen, sondern auch
Verstehen: EinWerkzeug für direktes, kontinuierliches Feedback beim Lernen von
Programmieren. In Proceedings der Pre-Conference-Workshops der 16. E-Learning
Fachtagung Informatik co-located with 16th e-Learning Conference of the German
Computer Society (DeLFI 2018) (CEUR Workshop Proceedings, Vol. 2250). CEUR-
WS.org.

[32] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck.
2015. An Empirical Study of Iterative Improvement in Programming Assignments.
In Proc. SIGCSE. ACM, 410–415. https://doi.org/10.1145/2676723.2677279

[33] Sven Strickroth. 2023. Does Peer Code Review Change My Mind on My Sub-
mission?. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1 (ITiCSE 2023). Association for Computing
Machinery, 498–504. https://doi.org/10.1145/3587102.3588802

[34] Sven Strickroth and Florian Holzinger. 2022. Supporting the Semi-Automatic
Feedback Provisioning on Programming Assignments. In Methodologies and In-
telligent Systems for Technology Enhanced Learning, 12th International Conference.
Springer International Publishing, Cham, 13–19. https://doi.org/10.1007/978-3-
031-20617-7_3

[35] Sven Strickroth, Hannes Olivier, and Niels Pinkwart. 2011. Das GATE-System:
Qualitätssteigerung durch Selbsttests für Studenten bei der Onlineabgabe von
Übungsaufgaben?. In Tagungsband der 9. e-Learning Fachtagung Informatik
(DeLFI). Gesellschaft für Informatik e.V., Bonn, Germany, 115–126. https:
//dl.gi.de/handle/20.500.12116/4740

[36] Sven Strickroth and Michael Striewe. 2022. Building a Corpus of Task-based
Grading and Feedback Systems for Learning and Teaching Programming. In-
ternational Journal of Engineering Pedagogy (iJEP) 12, 5 (Nov. 2022), 26–41.
https://doi.org/10.3991/ijep.v12i5.31283

[37] Barry J. Zimmerman. 2000. Self-Efficacy: An Essential Motive to Learn. Contem-
porary Educational Psychology 25, 1 (jan 2000), 82–91. https://doi.org/10.1006/
ceps.1999.1016

https://doi.org/10.1561/116.00000041
https://doi.org/10.1561/116.00000041
https://doi.org/10.1145/1822090.1822135
https://doi.org/10.5120/ijca2019918451
https://doi.org/10.5120/ijca2019918451
https://doi.org/10.3389/feduc.2019.00087
https://doi.org/10.1007/978-3-319-19713-5_51
https://doi.org/10.1055/s-2007-959034
https://doi.org/10.1055/s-2007-959034
https://doi.org/10.1080/07294360.2014.934328
https://doi.org/10.1145/1163405.1163411
https://doi.org/10.1007/s10664-021-09972-6
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.5220/0001966900540061
https://doi.org/10.5220/0001966900540061
https://doi.org/10.3102/003465430298487
https://doi.org/10.3991/ijep.v9i4.10201
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1007/s10639-023-11617-8
https://doi.org/10.1037/0022-3514.77.6.1121
https://doi.org/10.1037/0022-3514.77.6.1121
https://doi.org/10.1109/fie.2005.1611964
https://doi.org/10.1109/fie.2005.1611964
https://doi.org/10.1007/978-3-319-00293-4_20
https://doi.org/10.1080/02602930802687737
https://doi.org/10.1080/02602930802687737
https://doi.org/10.1002/ejsp.2752
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1007/bf02504672
https://doi.org/10.1145/2676723.2677279
https://doi.org/10.1145/3587102.3588802
https://doi.org/10.1007/978-3-031-20617-7_3
https://doi.org/10.1007/978-3-031-20617-7_3
https://dl.gi.de/handle/20.500.12116/4740
https://dl.gi.de/handle/20.500.12116/4740
https://doi.org/10.3991/ijep.v12i5.31283
https://doi.org/10.1006/ceps.1999.1016
https://doi.org/10.1006/ceps.1999.1016

	Abstract
	1 Introduction
	2 Related Research
	3 Setting & Methodology
	4 Results
	4.1 Analysis of the Self-Rated Confidence
	4.2 Test Result and the Self-Rated Confidence
	4.3 Analysis of Tests Requested Twice
	4.4 Time Needed to Enter the Confidence

	5 Discussion
	6 Limitations & Threats to Validity
	7 Conclusions and Outlook
	References

