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ABSTRACT
Peer review can be used as a collaborative learning activity in

which people with similar competencies evaluate other students’

submissions and/or provide feedback. It provides many potential

benefits such as timely feedback, high motivation, reduced work-

load for teachers, collaboration among the students, improving the

code, and seeing other solution strategies. However, there are also

challenges and contradictory results such as low motivation, partic-

ipation, quality, and no improvements in the reviews. This article

attempts to shed more light on these issues through an empirical in-

vestigation in a university-based introductory programming course

with approx. 900 students. In the evaluation, this paper empirically

investigates the effects of reviewing other solutions on the view of

one’s own solution and how students can be motivated to regularly

work on voluntary homework assignments. Furthermore, there is

an analysis of the peer reviews regarding their quality (length and

correctness), and the students’ participation and perceptions. The

results indicate that giving feedback can change the view on one’s

own submission regarding the complete correctness, the majority

of feedback is rather short, peer review assignments are a major

driver for working on the assignments, and the majority of students

like seeing other solutions. The majority of students seems to be

able to identify correct submissions as correct, however, (partly)

incorrect submissions are also often classified as completely correct.

Possible measures to address these weaknesses are discussed.
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1 INTRODUCTION
Learning programming is often perceived as hard by novices [22].

Working on exercises and timely feedback are important for learn-

ing [12]. Furthermore, learning is, according to the constructivism

learning theory, often seen as an inherently social process. In con-

tinental Europe, however, higher education is often dominated by

mass education and large classes attended by several hundred stu-

dents. A general problem in such courses is that social interactions,

discussions, and feedback become rather limited. First, providing all

students manual feedback for their submissions in a timely manner

is not possible due to the teacher to student ratio [28, 33]. Second, a

missing or reduced exchange with others (fellow students, teaching

assistants, or professors) was an intensified issue during the Corona

pandemic and its lockdowns.

In mass education students are often on their own and need

self-regulated learning skills to motivate themselves to work on the

homework assignments and to learn for examinations [13]. There-

fore, students often do not work on homework assignments (for

various reasons). To address these issues, homework assignments

are frequently declared a condition of participation in an exami-

nation or the overall grading is based on both homework and an

examination. However, these approaches might not be possible due

to examination regulations or might cause excessive discussions

such as when students feel mis-graded.

One possibility to address these issues is to use peer review or

peer feedback. This technique does not only help to cope with an

insufficient number of teachers but also makes students collaborate

as well as to read and critique code. Students can see different

solution strategies and are actively and directly involved to evaluate

and deliver written feedback on the work of their peer students

[23] – at best the reviewers as well as the reviewees profit.

This paper describes an approach to conduct peer review in large

classes, provides an analysis of the approach and the peer reviews,

and it answers the following research questions:

• RQ1: How motivating are peer reviews to work on (volun-

tary) homework assignments?

• RQ2: How can the delivered peer reviews be characterized

(regarding length, correctness, etc.)?

• RQ3: Does seeing other submissions change the view on

one’s own submission?

• RQ4: How do students perceive the peer review?

The remainder of this paper is organized as follows: First, the

related research on automatic feedback and peer (code) reviews

is outlined. Second, the evaluation setting is described. Third, the

dataset, evaluation method, and results are presented. The paper

closes with a discussion, a summary, and an outlook.
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2 RELATED RESEARCH
To support teaching in large classes, many (semi-)automated e-

assessment systems have been developed [32, 19]. An advantage of

such tools is that timely feedback can be provided 24/7. Disadvan-

tages are, however, that all tests and feedback need to be pre-defined,

there seems to be a focus on functional correctness [19, 7, 21], and

not all aspects such as creativity or implementation quality can be

assessed automatically [20]. Semi-automatic e-assessment systems

can pre-correct and significantly speed up the correction [31, 30]

but providing good feedback still requires a significant amount

of time and do not alleviate discussions on possible mis-grading.

Hence, automated systems cannot be the single solution.

In education, peer review is a collaborative learning activity in

which people with similar competencies evaluate fellow students’

submissions and/or provide feedback. Peer review has shown to be

a powerful method as it allows students to receive more timely and

extensive feedback, and to exchange ideas [10, 11, 15, 28]. Multiple

reviews by different peers can be better than a single review of an

expert [6]. Also, a positive impact on learning regarding a longer

time learners spent on a subject and reflection on one’s own learning

triggered by the review have been reported [34, 24].

Using peer review for programming education dates back at least

two decades [38, 15]. A recent systematic literature by Indriasari et

al. summarizes benefits and barriers for effective peer code review

[15]: Students are often motivated to do peer reviews [27, 9, 26].

Peer review was often perceived as a valuable experience by the stu-

dents where they can e. g. exchange ideas, see alternative solution

strategies, learn to give and receive criticism, learn from feedback,

and collaborate [15]. Also, the quality of the peer reviews and their

ability to detect errors can improve over time [29, 5] as well as the

quality of the code: There are reports that peer reviews can correct

low-level syntax errors, improve quality, and promote discussions

of higher-level design and implementation issues [14, 18]. Further-

more, students reassess their own solution attempt [37]. Despite

all the benefits, a low level of enthusiasm/motivation/engagement

is also often reported as a primary problem [15, 13, 36, 29]. The

participation rate in the peer review can be very low (e. g., 15 % [13]).

There is research on using gamification to increase motivation [16].

Also, the length of the feedback (e. g., 14 words on average [13]) and

the quality of the reviews can be very low (e. g., 28 % of the feed-

back being partly incorrect [13]). Reported reasons are an actual

or perceived lack of student understanding [36] or that students

just rush through the code at the last minute [29]. There are also

reports of no improvements in review skills over time [35].

In summary, the use of peer review has great pedagogical bene-

fits. However, for quality and review skills, there are contradictory

results reported. According to Indriasari et al. [15], the majority of

evaluations rely on evidence based on self-reported student opin-

ions. They state that experimental evidence is largely missing to

validate results and more research is needed regarding the correct-

ness of the peer reviews, and reward and penalty schemes [15].

Also, most peer review settings known by the author comprise less

than 200 students. Therefore, this paper addresses the research gap

to empirically investigate whether seeing other solutions changes

the view on one’s own solution, analyzes the peer reviews, and

evaluates an approach to motivate students to participate regularly.

3 EVALUATION SETTING
The setting for this research was the first semester computer science

course “Introduction to Programming” (programming language is

Java) at Ludwig Maximilian University of Munich, Germany, of

winter term 2021/2022. This course was attended by approx. 900

students with computer science as a major (or minor). There were

two 90-minute lectures a week, and 90-minute exercise sessions

conducted by 18 student teaching assistants (TA) in which the home-

work assignments were discussed in the following week after the

deadline. The student TAs were not involved in the peer reviews.

During the semester there were 10 (weekly with three exceptions

> 1 week) assignment sheets containing 3 to 5 tasks. In general,

there are argumentation, programming, modelling with UML, and

multiple-choice/cloze tasks. The first two sheets contained only ar-

gumentation and multiple-choice/cloze tasks. All following sheets

contained at least two programming tasks (median𝑚 = 3). Work-

ing on the assignments and peer reviews was fully voluntary and

ungraded. Solution attempts could be submitted to the open-source

GATE system [31] where a syntax and a (blackbox) function test

were available. Each test could be requested twice to prevent abus-

ing the system such as gaming the system approaches (cf. [2]). Until

the deadline, unlimited (re-)submissions were possible.

Based on the recommendations by Indriasari et al. [15], there is

only one peer review task per exercise sheet and there is at least a

whole week allocated for delivering the review giving the students

enough time for proper reviews. After the deadline of an exercise

sheet, the peer reviews were assigned randomly. For the peer re-

view tasks there was no automatic feedback available in order to

be able to investigate the students’ evaluation skills. During the

review, the students had to assess two fellow students’ submissions

on a 4-point Likert scale (4=best) according to the correctness, com-

pleteness, readability (referring to style), and comprehensibility

of the approach to the solution, and had to write a free comment

(the students were explicitly asked to give (positive) feedback and

hints for possible improvements). The review process was quite

strict: First, the students had to rate their own submission, then

they needed to review two other submissions, and finally, had to

rate their own submission again. The reviews became automati-

cally visible to students after the deadline. The first two sheets were

mainly intended for getting familiar with the peer review process

(no extra training); all following reviews were on tasks with coding.

Peer review requires active participation and the no-feedback

rate should be as low as possible. Hence, students need to participate

regularly. Not delivering a submission or review twice resulted in

an exclusion from the peer review for the rest of the term. Viewing

received reviews was possible even without delivering. This strict

exclusion rule was softened after the Christmas break (starting

with sheet 8) and students could freely decide for each assignment

whether they want to participate.

4 EVALUATION AND RESULTS
To investigate the research questions, GATE stores the peer reviews,

the self-assessments, the submission, exam scores, andmeta-data on

the system usage (e. g., time of delivery and time needed for the re-

views and self-assessments). There is no randomized control-group

design for ethical reasons. For the time measurement a timestamp
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was included in the HTML form and then subtracted from the cur-

rent timestamp when processing the HTTP-POST request. This is

not an optimal way regarding outliers, but should allow a rough

evaluation. Furthermore, syntax and unit tests were run on the the

submissions to compare the test results with the peer review ratings.

All these data are used for the following quantitative analyses.

All students were explicitly asked whether they voluntarily agree

that their anonymized submissions, peer reviews, and exam grades

can be used for research. The dataset consists of 695 students who

agreed and delivered 3050 submissions (i. e., 69 % of the unfiltered

dataset) and had 4680 peer reviews assignments (58 %).

At the end of the semester there was a questionnaire comprising

closed and open-ended questions regarding the peer-review and

the usage of the GATE system. For the four open-ended questions

presented in this paper a Thematic Analysis [4, 25] was performed.

All comments were tagged, and the frequencies were counted.

4.1 Participation
Tab. 1 gives an overview of the peer review assignments and the

associated number of submissions, review tasks, completed reviews,

students eligible to participate in the reviews, and some characteri-

zations that will be discussed in the following sections.

For each exercise sheet the peer reviewed assignment is the one

with the most submissions (statistically significant difference for

each sheet and in total: UTest 𝑝 < .01, non-parametric test, cf. [3,

17]; avg. factor 1.53 more submissions compared to other program-

ming assignments) – followed by multiple choice assignments (avg.

factor 1.2). Tab. 1 also shows declining submission numbers – start-

ing at 479 on the first falling to 129 on the last exercise sheet. The

number of the exercise sheet and the number of submissions were

found to be strongly negatively correlated (Spearman’s 𝜌 (8) = −1.0,

𝑝 < .000, non-parametric test). The number of students who com-

pleted the reviews declines equally (𝜌 (8) = −1.0, 𝑝 < .000).

The number of missing reviews and students who got no reviews

first increase until the second resp. fourth sheet.When the exclusion

rule took effect, these numbers continuously declines except for

two (different) sheets; sheet 7 was due over the Christmas holidays.

The number of students who got no reviews at all is between 5 to

21 % (arithmetic mean 𝑥 = 14 %). The majority of students always

received two reviews (𝑥 = 73 %). Interestingly, not all students

wanted to see the received reviews (𝑥 = 42 % and 𝑥 = 21 % of the

students who completed the reviews) and from the students who

got no reviews only a small fraction actually wanted to see reviews.

Starting from exercise sheet 8, all students were eligible to take

part in the peer reviews again. For every submission, the students

could mark a check box indicating whether they want to participate

in the peer review for this assignment. This change in the procedure

was conducted because on the one hand several students requested

to be re-added again and on the other hand to see whether more

students could be motivated to work on the assignments (again).

For exercise sheet 8, 12 students voluntarily asked to be excluded

and 13 previously excluded students requested to take part again; 8

of these finally provided peer reviews. For task 9 and 10, 12 students

wanted to be excluded each, 15 respective 21 excluded students

wanted to take part again, and of these 13 each delivered the peer

reviews – no significant change to the prevailing pattern.

4.2 Analyzing the Reviews
In total there were 3975 peer reviews delivered by 451 distinct

students. The median length of all reviews is 13 words
1
(𝑥 = 30) or

87 characters (𝑥 = 203). The number of words seems to increase

over time (Spearman’s 𝜌 (8) = .65, 𝑝 = .041 for the median number

of words Wm; 𝜌 (8) = .75, 𝑝 = .013 for W𝑥 , cf. Tab. 1). There are 237

reviews with ≥ 100 words (6 %) and 70 with ≥ 200 words (1.8 %).

To identify junk/bad feedback (such as containing single charac-

ters or many repeated characters) or feedback in which mainly code

solutions were posted, the Shannon entropy was calculated to get

a feeling on how much information is included in a feedback.
2
The

median entropy is 4.25 bit (𝑥 = 4.017,𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 5.257). There

are 28 reviews with an entropy of 0 (containing just a space, dot,

etc.) that could be identified as junk (whereas 4 of these were for

submissions without any solution attempt). When looking at the

data sorted by entropy, there is a gap after these 28 junk reviews.

Other reviews start with an entropy of 1 (containing an ASCII smi-

ley “:)”;𝑛 = 10), or 1.5 containing oneword (such as “good”, “perfect”

etc.). In the top-10 feedback with the highest entropy, 8 contained

a significant amount of code relative to other explanations.

The median time for completing the reviews was 193 seconds

(𝑥 = 403 s) with a minimum of 6 and a maximum of 27540 s. There is

a positive correlation between the variables length of the feedback

and time needed (Spearman’s 𝜌 (3973) = .68, 𝑝 < .000), also the

avg. time spent on the reviews seems to increase over time (𝜌 (8) =
.90, 𝑝 < .000, cf. Tab. 1). The majority of students delivered their

reviews roughly in the middle between the start and the deadline

of the peer review assignments (i. e., for one week peer reviews:

𝑚 = 82.5 h = 3.4 d, 𝑥 = 85.6 h before the deadline). The majority

of reviews (𝑛 = 2921, 74 %) were delivered before the solution was

discussed in the exercise groups the students registered for.

Students could also rate the received feedback with a thumb

up or thumb down (not visible to students). Such a rating was

given for 1664 reviews; 112 thumbs up and 1552 thumbs down.

The longest negatively rated feedback has 75 words. The median

of all negatively rated feedback is 7 words (𝑥 = 14.7). For the

thumb up rated feedback the shortest is a junk one containing

just a space, the longest is 548 words with a median of 14 words

(𝑥 = 29.4). According to the Mann-Whitney UTest this difference

is statistically significant (𝑈 = 106596, 𝑝 < .000 two-sided). There

also is a statistically significant difference between the writing time

for positively (𝑚 = 195 s, 𝑥 = 392 s) and negatively (𝑚 = 123 s,

𝑥 = 299 s,𝑚𝑎𝑥 = 3454 s) rated feedback (𝑈 = 101593, 𝑝 = .003).

4.3 Correctness of the Review Ratings
All Students had to rate their fellow students’ submissions accord-

ing to correctness and completeness on a Likert-scale from 1 to 4

(4 is best). This correctness rating comprised both, the syntactic

and the functional correctness. For the evaluation, a contingency

table and the 𝜒2
test of independence are used (cf. [3]). To map

the integer values to a binary scale, a threshold of correctness=4

and completeness=4 is used to investigate whether the students’

ratings correspondent to the unit tests’ actual results. The syntactic

correctness of Java submissions can be checked automatically by

1
the feedback was split by white space (“\s+”) and the resulting tokens were counted

2
implementation based on https://stackoverflow.com/a/68031954

https://stackoverflow.com/a/68031954
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Table 1: Overview of the tasks, the peer reviews, and their characteristics (S: submissions, P: students with review assignments;
C: completed reviews & self-assessments, R: review assignments, M: missing reviews, 2R: students who got 2 reviews, 0R:
students who got zero reviews, WSR: students who wanted to view received reviews, S0R: students who actually saw no reviews,
T: median/average time for the reviews in seconds, W: number of words, EP: students eligible to participate in peer reviews)

No. Sheet &Assignment/task #S #P #C #R #M #2R #0R #WSR #S0R Tm T𝑥 Wm W𝑥 #EP
1 Pseudo code 479 467 401 787 119 328 12 408 10 246 157 11 16 691

2 Algorithm properties 464 450 369 773 160 295 21 271 11 486 234 19 38 691

3 While loop 422 368 338 637 63 299 46 281 2 258 148 10 19 445

4 Collatz sequence 382 329 308 568 58 280 48 250 6 284 170 11 21 397

5 Count chars t,e,l in array 346 294 277 505 43 256 46 192 3 313 180 12 27 346

6 Class Fraction 295 250 220 425 48 205 45 151 3 520 254 16 44 311

7 Linked List 220 189 148 319 78 115 37 117 8 800 260 13 46 262

8 Binary searchtree 162 147 129 259 37 115 16 90 2 667 299 18 39 691

9 Collections & OO modelling 151 121 108 211 31 91 26 86 1 493 305 19 41 691

10 Custom Exceptions 129 114 75 196 68 46 24 66 7 589 331 21 43 691

running a compiler and simply checking the exit code. Checking

the functional correctness automatically using unit tests requires

a strict task specification, e. g. naming of methods and output for-

mats. Please note that an invalid syntax also results in a failed unit

test. Analyzed are the programming assignments excluding 7 and

8 (i. e., 3, 4, 5, 6, 9, and 10), because those two could not be tested

automatically due to design freedoms in the solution. Tab. 2 shows

an overview of the correct classifications per task and overall (each

row except for task 10 shows a significant association with 𝑝 < .007;

the all tasks association: 𝜒2 (1, 𝑛 = 2231) = 271.24, 𝑝 < .000).

Table 2: Overview of the correctness/completeness classi-
fication quality of the students in the reviews and self-
assessments (TP: true positives, FP: false positives, FN: false
negatives, TN: true negatives, TPR: true positive rate (sensi-
tivity), TNR: true negative rate (specificity), ACC: accuracy,
SA: self-assessment)

Dataset TN FP FN TP TPR TNR ACC
Task 3 87 88 57 342 .86 .50 .70

Task 4, strict 128 194 32 156 .83 .40 .56

Task 4, relaxed 116 194 32 168 .84 .37 .56

Task 5 115 112 22 213 .91 .51 .71

Task 6 165 123 25 64 .72 .57 .61

Task 9 78 83 3 16 .84 .48 .52

Task 10 59 69 0 0 - .46 .46

All tasks 632 669 139 791 .85 .49 .64

Pre SA 294 457 60 515 .90 .39 .61

Post SA 354 397 61 514 .89 .47 .65

A total of 2231 peer reviews were delivered for the selected tasks

whereas 1979 correspondent to syntactically correct and 930 to

completely correct submissions. Across all tasks, students had an

accuracy (sum of true positives and true negatives divided by the

total number) of 64 %. Students seem to be better in classifying

correct submissions as correct (TPR, sensitivity: 0.85) than in clas-

sifying incorrect submissions as incorrect (TNR, specificity: 0.46).

This holds for all tasks whereas the sensitivity ranges from 0.72 to

0.91, the specificity from 0.4 and 0.57, and the accuracy from 0.46 to

0.71. No clear trends are visible over time and no significant corre-

lations could be found. The overall false positive rate is 0.3 and the

false negative rate 0.06. Here, statistically significant correlations

could be found between time and false positive rate (Spearman’s

𝜌 (4) = .82, 𝑝 = .042) and false negative rate (𝜌 (4) = −.90, 𝑝 = .042).

As an exemplary case, assignment 4 (printing the Collatz se-

quence, e. g.: for number 5: 5, 16, 8, 4, 2, 1) is analyzed in more detail.

For this assignment there are 382 submissions of which only 139

are correct (36 %). Here, a common problem was that the students

often (n=132; 32 %) forgot to print the initial number – despite an

example output on the exercise sheet. The strict correct version was

correctly identified only in 156 reviews. In 114 reviews the incom-

plete version was rated with correctness=4 and completeness=4

(resulting in a false positive rate of 0.38); only in 12 reviews the

incomplete version was identified as correctness=4 and complete-

ness=3 (relaxed case in Tab. 2, only the sensitivity slightly improves

and specificity slightly decreases). For the “All tasks” row in Tab. 2

and all analyses, the strict interpretation is used. A similar case,

was found for assignment 3 where all uneven numbers from 1 to 10,

and finally “Boom!” should be printed on the console. 40 students

printed “BOOM!”. As this was the first programming assignment

and only a minor mistake, the unit test accepted both.

There is a positive correlation between the frequency of the deliv-

ery of correct submissions, the sensitivity (Spearman’s 𝜌 (357) = .14,

𝑝 = .007), and the accuracy (𝜌 (357) = .17, 𝑝 = .001). However, no

statistically significant correlations between this frequency and the

specificity, and between the accuracy and the number of delivered

peer reviews could be found.

4.4 Self-Assessments
Seeing other solution strategies on coding tasks is quite often men-

tioned as very important by students (cf. Sect. 2 and 4.5). Therefore,

the hypothesis that doing reviews and seeing other solutions has

an impact on the view on the own submission (i. e., regarding cor-

rectness, elegance of the strategy, and coding style) is empirically

investigated . First, the characterization of the dataset and the cor-

rectness of the self-assessments are presented.



Does Peer Code Review Change My Mind on My Submission? ITiCSE 2023, July 8–12, 2023, Turku, Finland

The students performed 1603 complete self-assessments (pre

and post) during the peer review for the 8 programming assign-

ments – 31 self-assessments were not completed, i. e. only the

pre self-assessment was delivered. For the programming tasks (ex-

cept assignment 7 and 8, cf. Sect. 4.3) there were 1326 complete

self-assessment delivered. The classification regarding the correct-

ness=4 and completeness=4 by the students is shown at the bottom

of Tab. 2 for both, the pre and post, self-assessments. In the pre

self-assessments, the sensitivity is slightly higher than in the peer

reviews (0.90 vs. 0.85) and the accuracy (0.64 vs 0.61) are slightly

lower. For the specificity there is a larger difference (0.39 vs. 0.46). In

the post self-assessments, 40 students (3 %) changed a false positive

rating to a true negative rating. This results in a higher specificity

(0.47 vs. 0.39 in the pre assessment). There is however one change

from a true positive to a false negative. In general, the numbers get

closer to the general peer review ratios.

Finally, the differences between the pre and post self-assessments

are evaluated for all 8 programming assignments. The median time

spent on the pre self-assessments was 32 seconds (𝑥 = 74 seconds)

and on the post self-assessments 14 seconds (𝑥 = 26 seconds).

The difference is statistically significant according to the Wilcoxon

signed-rank test (𝑝 < .000). No trends over time for the pre and

post assessment times could be observed. The results for the four

dimensions of correctness, completeness, comprehensibility, and

readability can be seen in Table 3. The differences in the ratings

between the pre and the post self-assessment are only statistically

significant for correctness and completeness (𝑝 ≤ .006), however,

both with a very small effect size. The completeness rating was

changed 250 times (16 %) and the correctness rating 329 times (21 %)

whereas it was lowered 150 resp. 190 times.

Table 3: Evaluation of the Self-Assessments (n=1603), p values
according to Wilcoxon signed-rank test

Dimension Pre 𝑥 Pre𝑚 Post 𝑥 Post𝑚 p
Correctness 3.54 4 3.50 4 .006

Completeness 3.63 4 3.60 4 .004

Comprehensibility 3.66 4 3.68 4 .173

Readability 3.67 4 3.66 4 .598

4.5 Questionnaires
In the questionnaire after the term, 243 students (male: 133, female:

82, median age 20-21) answered at least one item. The majority of

students (𝑛 = 164) answered that they attended the lecture until the

end. Only 79 students reported that they discontinued the course

about halfway through the term (at chapter𝑚 = 8, 𝑥 = 8.6) when

advanced topics were studied (chapter 7: dynamic data structures,

chapter 8: sorting & complexity). Overall, the grade “good” was

assigned by the students (1 very good, 6 inadequate;𝑚 = 2, 𝑥 = 2.6).

The closed questions regarding peer review are on a 5-point

Likert-scale from 1 to 5 (1: “do not agree at all” to 5: “fully agree”).

The majority of students agreed that the peer reviews of their fellow

students were helpful (𝑛 = 198,𝑚 = 4, 𝑥 = 3.7) and particularly

helpful for seeing new/alternative solutions (𝑛 = 200,𝑚 = 4, 𝑥 = 4).

In general, the peer review was seen as meaningful (𝑛 = 199,𝑚 =

4, 𝑥 = 3.8), motivating (𝑛 = 200,𝑚 = 4, 𝑥 = 3.5), easy to do (𝑛 =

295,𝑚 = 4, 𝑥 = 3.5), and fun (𝑛 = 294,𝑚 = 4, 𝑥 = 3.7). When asked

about the time needed for a peer review (self-assessment plus 2

peer reviews), 125 students answered with a median of 12.5 minutes

(𝑥 = 17 min.). The majority of students also preferred to be asked

whether to take part in the peer review for each assignment instead

of automatically taking part when submitting a solution and having

strict exclusion rules (𝑛 = 179,𝑚 = 4, 𝑥 = 3.6).

The next part of the questionnaire was about the automatic tests.

Here, a 4-point Likert-scale from 1 to 4 (1: never, 4: always) was

used. The students answered that they used the automatic tests

frequently (𝑛 = 222,𝑚 = 3, 𝑥 = 3.0) and found these frequently

helpful (𝑛 = 216,𝑚 = 3, 𝑥 = 2.8). However, the automatic tests were

only rated as rather motivating for them to work on the homework

assignments (𝑛 = 209,𝑚 = 2, 𝑥 = 2.3). In a direct comparison, if only

one of the approaches peer feedback or testing were available to the

students (-2: peer review, -1: preferably peer review; 1: preferably

automatic tests; 2: automatic tests), the majority prefers the peer

review over the automatic tests (𝑛 = 243,𝑚 = −1, 𝑥 = 0.1).

In the following the tags and the associated frequencies of the

qualitatively analyzed open-ended questions are presented. The

reasons given for not participating are: “no time/other tasks were

more important” (6x), “no perceived added value” (3x), and “too

much pressure”, “no feedback received”, “correctness challenged”,

as well as “procrastination” (each 1x). The answers on the question

“What did you like most about GATE and peer feedback?” are: “see-

ing other solutions” (30x), “peer review was helpful” (20x), “high

usability of GATE” (structure, presentation of the tasks, . . . ) (9x),

“peer review was motivating” (8x), “more interaction compared to

other courses” (8x), “automatic tests” (6x), “positive sentiment in

the feedback” (5x), “helpful to see possible errors” (4x), ”like to help

others“ (2x), “giving feedback helps learning” (2x), and “comparison

with others” (2x). Finally, the following improvements were named:

“ask every time for PR participation” (8x), “sanctions [(exclusion

from PR)] are too hard” (7x), “feedback was too short or uninfor-

mative” (5x), “get feedback for the given review” (4x), “unlimited

tests” (4x), “discuss/ask questions in reviews” (3x), “availability of a

sample solution for the review” (3x), and “editing peer reviews” (2x).

Also, some general concernswerementioned: “feedbackwaswrong”

(2x), “too hard to give feedback” (2x), and “peer review should be

abolished” (2x). Two further improvements were to automatically

notify the students for the start of the peer review, and to revise

the “hard to distinguish” ratings for completeness and correctness.

4.6 Exam
For the exam 635 students registered of which 416 students attended

the exam and agreed their result to be correlated to their learning

activities. 318 students (76 %) participated in the peer reviews at

least once. The median score (max. 33) of the students with peer

review is 22 and for the students without peer review 18 (overall:

𝑚 = 21, 𝑥 = 19.7). This is a statistically significant difference accord-

ing to the Mann-Whitney-UTest (𝑈 = 21184, 𝑝 < .000 two-sided).

There also seem to be correlations between the number of com-

pleted peer reviews and the score (Spearman’s 𝜌 (414) = .415,

𝑝 < .000) as well as between the number of delivered assignments

and the score (𝜌 (414) = .457, 𝑝 < .000).
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5 DISCUSSION
The number of submissions decline for all tasks equally and are

normal for university courses. Still, there are significantly more sub-

missions for peer review and easier to solve multiple-choice tasks

compared to normal programming tasks. Combined with the results

from the questionnaire and the fact that not many students volun-

tarily signed out from the peer reviews starting from assignment 8

this indicates that students saw a clear advantage of the peer review

over the other assignments for which only non-human feedback

was available. The answers in the questionnaire on the preference

of the peer review and liking the collaboration back this conclusion.

However, the study was conducted during the pandemic and half

of the semester was in lockdown. The rigid participation rules were

criticized by some students but seem to have, in general, lowered

the missing reviews rate and kept the participation up (RQ1). The

change of the participation rule at the end of the semester, however,

did not motivate significantly more students to participate (again).

The majority of students wanted to see their received peer re-

views. It seems strange that not all students tried to view their

received reviews. Maybe those students haven’t found the link (it

is the very same as for delivering the reviews) or are not interested.

To answer RQ2, the peer reviewswere quantitatively analyzed. In

general, the majority of the feedback was quite short (m=14 words)

– this could also be observed in other research (e. g., [13] where tutor

feedback was also found in this order). The time invested in the

reviews seems to be quite short (m=3 min. vs. 12 min. reported in

the questionnaire) but mostly not directly before the deadline. The

number of words also seems be a good indicator for how valuable

the feedback is perceived. However, the simple word count metric

also shows greater numbers for source code and is therefore only a

rough estimation. It might be combined with the Shannon entropy

to also detect feedback in which mainly source code is posted. Still,

intentionally rogue feedback such as a bad joke cannot be detected

this way. Why the feedback length increases needs further research.

Students seem to be quite good in identifying correct submis-

sions as correct (sensitivity 0.85) but not that good in classifying

incorrect submissions as incorrect (specificity 0.46) – this contra-

dicts other research (e. g., [13]). Except for task 10 there are more

correct classifications compared to incorrect ones. It is hard to

decide whether the students become better during the term. The

sensitivity and specificity don’t significantly change but the false

negative rate decreases and the false positive rate increases. In com-

parison to an automated test, students often did not see or “punish”

smaller mistakes in their ratings. Maybe the tasks get harder or

more complex faster than the competencies increase. On the one

hand, being more generous in ratings for minor mistakes which are

not really significant for the exercised concept (e. g., a typo in the

output, class, method, or package name) might be more motivating

(also teaching assistants do this, cf. [31]). On the other hand, how-

ever, there are algorithms where subtle changes are significant, and

students might not have understood the assignment, made the same

mistake, or did not test the (review and their own) submissions. Pro-

viding automated test results to the students for the review could

help. However, this might also lower the effort students put into the

reviews. Still, a correlation that indicates that students who deliver

more correct submissions have a higher accuracy was found.

A strict self-assessment process was used to evaluate RQ3. Stu-

dents seem a bit more optimistic on the correctness and complete-

ness of their own submitted solution in the pre self-assessments

than in the post self-assessment. Peer reviewing other solutions

seems to have an impact on how students perceive their own sub-

mission regarding correctness and completeness – for the 6 in more

detail analyzed programming assignments the ratings seem to get

closer to the truth. However, only a few students changed their

rating and most students did not take much time to do the second

self-assessment (median time: 14 s). Therefore, the impact seems to

be rather low. It was also expected that seeing differently formatted

source code has an impact on the own submission. This seems not

to be the case. A further analysis of the coding style should be

conducted. Additionally, this indicates that the ability to self-assess

one’s own solution attempt seems in general to be comparable to

the assessment of other submissions. It might be interesting to see

whether a similar effect can be seen if only a model solution is pro-

vided. However, this might contradict the often mentioned positive

aspect of peer reviews to see different solution strategies.

A lot of different advantages have been named in the question-

naire that are also often intended by teachers (cf. [15], RQ4). Only

individual students explicitly opposed peer reviews. Why students

prefer peer review over automatic tests needs further investigation.

In personal communication, getting feedback from a real person

and also getting reasons why the code is not correct were named.

The correlation between the (peer review) activities and the

exam score might just represent already engaged students.

6 CONCLUSIONS AND OUTLOOK
In this paper an approach for peer review in an introductory pro-

gramming course is presented and analyzed. Working on the home-

work assignments was voluntary and peer review has shown to be

a driver to motivate students to work on them. By using a strict par-

ticipation rule for the peer reviews the missing review rate could be

kept quite low. Doing reviews has shown to change students’ view

on their own solutions regarding the overall correctness. Overall,

most students liked seeing other solutions, found the peer review

helpful and motivating, and preferred it over automated tests.

For the future there are a number of aspects that should be eval-

uated: 1) To increase the quality of the reviews, the students could

either be trained or a worked example should be presented. 2) Stu-

dents request more flexibility on whether they want to participate

in the reviews. Therefore, students could be allowed to decide for

every assignment to take part in the reviews – in a combination

with the rigid exclusion approach. This could lower the missing re-

view rate but not providing a possible solution to others might harm

their learning. 3) In this article there was a focus on a quantitative

analysis. In following research the peer reviews could be sampled

(due to the amount) and qualitatively evaluated (e. g., frequencies of

hints, questions, rogue submissions/feedback). 4) Currently, there

is a study undergoing in which students are instantly notified as

soon as a new review is posted and can discuss with both reviewers.

Reasons are that students explicitly requested this in the question-

naire, about 130 reviews contained questions and/or contact details,

and discussions are a main aspect of peer reviews in industry [8, 1].

I thank all students who participated and also shared their data!
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