
Short Paper—Paper Formatting for online-journals.org

AI-enhanced Auto-correction of Programming Exercises:

How Effective is GPT-3.5?

Imen Azaiz1(), Oliver Deckarm1, Sven Strickroth1()
1 LMU Munich, Munich, Germany

{imen.azaiz,sven.strickroth}@ifi.lmu.de

Abstract—Timely formative feedback is considered as one of the most im-

portant drivers for effective learning. Delivering timely and individualized feed-

back is particularly challenging in large classes in higher education. Recently

Large Language Models such as GPT-3 became available to the public that

showed promising results on various tasks such as code generation and code ex-

planation. This paper investigates the potential of AI in providing personalized

code correction and generating feedback. Based on existing student submissions

of two different real-world assignments, the correctness of the AI-aided e-assess-

ment as well as the characteristics such as fault localization, correctness of hints,

and code style suggestions of the generated feedback are investigated. The results

show that 73 % of the submissions were correctly identified as either correct or

incorrect. In 59 % of these cases, GPT-3.5 also successfully generated effective

and high-quality feedback. Additionally, GPT-3.5 exhibited weaknesses in its

evaluation, including localization of errors that were not the actual errors, or even

hallucinated errors. Implications and potential new usage scenarios are discussed.

Keywords—E-Assessment, Personalized Feedback, GPT-3.5, Large Language

Model, Programming Education, Formative Assessment

1 Introduction

Learning programming is often experienced as hard by students [1]. It involves var-

ious aspects like mastering the formal programming language syntax, problem-solving

skills, computational thinking, and testing/debugging abilities. Hence, learning pro-

gramming requires practice, commonly in the form of weekly homework assignments

in traditional programming courses. Timely feedback is a key driver of learning [2].

However, introductory courses are frequently characterized by large class sizes with

several hundred students, making manual teacher corrections for timely feedback im-

practical due to resource limitations [3]. Crowdsourcing feedback through peer review

has limitations, relying on the motivation and expertise of participating students [4–6].

Many e-assessment systems have been developed to (semi-)automatically assess stu-

dents’ submissions and provide feedback [7]. However, a common issue is that these

systems often focus solely on functional correctness, through employ standard compil-

ers and test cases. Moreover, developing sophisticated tests is very laborious.

Recently, powerful and accessible AI technologies such as GPT-3.5 have emerged,

demonstrating their ability to solve programming assignments and pass exams [8–11].

Accepted to International Journal of Engineering Pedagogy (iJEP)

Short Paper—Paper Formatting for online-journals.org

Hence, the idea was born to investigate whether the Large Language Model (LLM)

GPT-3.5 can be used to assess students’ solutions and deliver automated feedback [12].

This study explores the advantages of an AI-assisted approach in introductory program-

ming education, where assignment instructions and student solutions are sent to GPT-

3.5 to obtain tailored feedback at scale. The main research question is whether GPT-

3.5 can provide “good” personalized feedback, including code style suggestions, for

programming tasks. The following research questions are investigated:

• RQ1: What is the quality of GPT-3.5 in determining the submissions’ correct-

ness?

• RQ2: How can the GPT-3.5-generated feedback be characterized regarding

length, suggestion hints, compliance to assignment instruction, code correction,

error localization, and personalization?

• RQ3: What are the strengths and weaknesses of GPT-3.5 in delivering person-

alized feedback and code corrections?

By addressing these questions, we contribute to the understanding of how AI can be

effectively utilized to provide personalized and accurate support in beginner program-

ming education. Our findings provide insights into practical implications and potential

limitations of the AI-assisted approach, benefiting educators and developers aiming to

improve programming instruction and support. The paper's structure includes a presen-

tation of related research in programming education and e-assessment, a description of

our empirical study's methodology, the presentation of study results in the evaluation

section, and concludes with a discussion and conclusions.

2 Related Research

LLMs such as GPT and ChatGPT became available recently and have already been

investigated in the domain of programming to assist developers, educators, and learners

to explore capabilities and limitations: Tian et al. explored the potential of ChatGPT as

an assistant bot for programmers and found ChatGPT to be effective in tasks such as

code generation, program repair, and code summarization [9]. Moreover, its summary

explanations of incorrect code offer valuable insights into the original intentions of de-

velopers. Surameery & Shakor [13] show that ChatGPT can provide effective debug-

ging assistance by predicting and explaining programming errors. In the context of au-

tomatic program repair, ChatGPT has shown to have a similar performance on a stand-

ard benchmark set as existing deep-learning program repair techniques and outperforms

standard program repair approaches [14].

In the domain of education, one of the pioneering papers used OpenAI Codex model

and showed that it can solve CS1 programming exercises with a quality comparable to

students, but sometimes struggles with output formatting [15]. In a follow up study,

Codex outscored most students for CS2 assignments and exams [11]. Becker et al. [16]

discuss the rapid advancement of AI-driven code generation tools and emphasize the

need for educators to address their potential impact on teaching. Danny et al. [17] ex-

plore the impact of LLMs' on computing education, summarizing recent studies on their

Short Paper—Paper Formatting for online-journals.org

performance and pedagogical influence, covering responsible tool use, societal impli-

cations, and readiness for dynamic environments.

LLMs have already been successfully used to generate programming assignments

[18] and to explain syntax errors and compiler error messages in an actionable way that

can be used as feedback for students [19, 20]. Furthermore, LLMs have been used to

generate good code explanations [18] and a study by MacNeil et al. [21] showed that

automatic generated code explanations by LLMs in an e-book were appreciated by stu-

dents. In a study by Leinonen et al. [22], students rated generated code explanations as

better than those of their fellow peers. This research underlines that LLMs can be used

to support students in learning programming and students do not reject their usage.

Common is that all authors argue that instructors need to inspect the generated results.

The capabilities of LLMs for providing feedback was already investigated (e. g., [23,

24]). Kiesler et al. [23] investigated ChatGPT’s responses to students seeking assistance

with introductory programming tasks. They also assessed ChatGPT's performance in

providing formative feedback to students on programming tasks, demonstrating its ef-

fectiveness in areas like compilation error detection, correction, and textual explana-

tions. However, they only provided the code written by the student to ChatGPT and not

the assignment specification. While doing this research, Balse et al. [24] published a

paper investigating the feasibility of GPT-3 to check, critique and suggest changes to

code written by students in an online programming exam of an undergraduate Python

programming course. They found a high variability in the accuracy (between 57 and

79 %) and received incorrect and inconsistent feedback. This research focuses on Java

programming assignments, analyzes the performance of GPT-3.5 based on the correct-

ness of the submission, and systematically analyses qualitative aspects of the feedback

content such as (correct) fault localization, coding style suggestions, and type of the

feedback (contains some code, no code, only code).

In summary, prior research demonstrates the effectiveness of LLMs in assisting de-

velopers, learners, and educators in programming (education). However, there is a re-

search gap in assessing GPT-3.5's ability to correct student code submissions and

providing feedback while maintaining assignment requirements and characteristics and

quality of the generated feedback. LLMs offer an advantage by eliminating the need

for test case development compared to traditional e-assessment systems. Our research

aims to assess GPT-3.5's ability to provide personalized, assignment-compliant feed-

back for enhanced auto-correction, ensuring effective and valuable corrections that

match the submitted code and adhere to the assignment's specifications.

3 Methodology and Approach

Our primary goal is to assess the quality of GPT-3.5-generated feedback for student

programming assignment submissions. We aim to ascertain whether GPT-3.5 can effi-

ciently provide automated formative feedback for programming assignments. An em-

pirical study involving two programming assignments selected from an introductory

course at Ludwig Maximilian University Munich, Germany was conducted. Approxi-

mately 900 students, majoring or minoring in computer science, attended this course,

Short Paper—Paper Formatting for online-journals.org

which included ten weekly homework assignments. Students uploaded their solutions

to the e-assessment system GATE [25] to receive instant feedback. Additionally, a

weekly peer review was conducted for one of the assignments (cf. [6]). Participation in

both, the assignments and peer review, was voluntary. Teaching assistants held weekly

exercise sessions to discuss homework assignment solutions. We selected a less com-

plex assignment from the third assignment sheet and a more challenging one from the

seventh for this study. We randomly sampled approx. 10 % of student submissions for

these two assignments for an in-depth analysis. For privacy and ethical compliance, we

exclusively analyzed submissions from students who explicitly consented to their use

for research purposes (695 out of 900 students). There are 33 sampled student submis-

sions for the first selected assignment. The instruction is (translated to English): “Write

a Java application named SimpleWhileLoop that prints all odd numbers from 1 to 10

using a while loop, and prints ‘Boom!’ (without quotation marks) afterwards.” The in-

struction of the second selected assignment is as follows (translated to English, 16 sam-

pled submissions): “This task refers to the abstract data types singly linked list and

queue introduced in the lecture. Implement the (given) Queue interface based on the

specifications (in the interface) for a queue using the QueueImpl class, using a singly

linked list.” Additionally, the interface for Queue was provided as a Java file which

specified the methods to implement as well as a description of their semantics as Java-

Doc. The Queue interface defines several methods, including void append(), which

adds a value to the end of the queue; boolean isEmpty(), which checks if the queue is

empty; void remove(), which removes the first element from the queue; int peek(),

which returns the value of the first element in the queue (or the given constant

EMPTY_VALUE if the queue is empty); and int[] toArray(), which returns an array

containing the values of the queue. The students were expected to use a static inner

class for the node class.

Submissions were processed by the GPT-3.5 API (davinci-003 model) on June 12,

2023, three times in randomized order, resulting in 99 feedbacks for the first assignment

and 48 for the second. We experimented with various prompts to suit our research ques-

tion and settled on the following prompt structure:

ASSIGNMENT INSTRUCTION

Find all kinds of errors, including logical ones, and provide hints for their correc-

tion or improvement, including suggestions for code style.

STUDENT SUBMISSION

To ensure a thorough evaluation, two researchers with extensive expertise in correc-

tion and providing feedback for programming assignments meticulously reviewed all

submissions and the generated feedback. They assessed the submissions’ correctness

(both syntactic and functional) and analyzed 147 generated feedback texts for the Sim-

pleWhileLoop and Queue tasks. The feedback analysis covered an analysis of the clas-

sification quality (RQ1) and various characteristics, including length, content (code-

only, text with code, style hints), hint accuracy, references to the specific submissions,

and error detection comprehensiveness (RQ2). The applied methods are described in

the respective sections before the results are presented.

Short Paper—Paper Formatting for online-journals.org

4 Results

In this section, we present the results of the manual evaluation of submissions and

the analysis of GPT-3.5's generated feedback. We first assess the feedback length. Next,

we report on the correctness and accuracy of GPT-3.5's assessment of the submissions.

Finally, the evaluation of the characteristics of the generated feedback is presented.

We examined 49 submissions in total for our investigation across the two assign-

ments. For the SimpleWhileLoop assignment, there are 33 submissions, of which 19 are

“correct” and 14 are “incorrect”. For the Queue assignment, there are 16 submissions

of which 4 are “correct” and 12 are “incorrect”. “Correct” submissions met the assign-

ment requirements accurately, while “incorrect” submissions had syntactic or func-

tional errors, did not fulfill the requirements, or were incomplete (e. g., missing files or

empty classes with no solution attempt).

4.1 Length of the Generated Feedback

The feedback length was determined by tokenizing the feedback string using white

space ("\s+") and counting the resulting tokens. The overall median length is 82 words

(�̅�=85). For the SimpleWhileLoop assignment, the median word count is 65 words

(�̅�=72, min=21, max=156). For the Queue assignment, the median word count is 112

words (�̅� =111, min=19, max=178). Tab. 1 shows the word counts for both assignments

and for all three runs. According to the Mann-Whitney U-Test the difference between

the two assignments is statistically significant (𝑈=3783, 𝑝=.000, two-sided).

Table 1. Overview of Word Counts in GPT-3.5’s Generated Feedback

 SimpleWhileLoop Queue

words in feedback 1st 2nd 3rd OA 1st 2nd 3rd OA

Mean word count 72 68 75 72 121 103 109 111

Median word count 65 67 65 65 120 106 108 112

Min word count 28 21 28 21 44 19 28 19

Max word count 156 116 156 156 174 178 165 178

4.2 Correctness of the GPT-3.5 Evaluation

We assessed the correctness of the feedback generated for the 49 submissions over

3 iterations, for a total of 147 feedback instances. Since GPT-3.5 does not always ex-

plicitly label submissions as “correct” or “incorrect”, the researchers made this deter-

mination: If the feedback solely contains suggestions without identified errors or func-

tional changes, we classified it as being labeled “correct” by GPT-3.5. Conversely, if

GPT-3.5 identified errors, proposed modifications that address critical issues, or resem-

bled a sample solution without errors or specific hints, we interpreted it as labeled “in-

correct”. Out of the 147 submissions, 69 incorrect submissions were correctly identified

as “incorrect” by the GPT-3.5 (TN, 47 %) and 39 correct submissions were identified

as “correct” (TP, 27 %). Additionally, 30 correct submissions were identified as

Short Paper—Paper Formatting for online-journals.org

“incorrect” by the LLM (FN, 20 %), and 9 incorrect submissions were identified as

“correct” (FP, 6 %). Overall, a total of 108 submissions out of 147 were correctly iden-

tified (accuracy: 73 %). Tab. 2 presents an in-depth evaluation of GPT-3.5’s correctness

based on different evaluation metrics for the three runs (1st, 2nd, 3rd) as well as the

overall average (OA) for each task and both tasks combined. The metrics include accu-

racy ((𝑇𝑃+𝑇𝑁)/(𝑇𝑃+𝑇N+𝐹𝑃+𝐹𝑁)) that presents the proportion of correct classifica-

tions made by GPT-3.5, precision (𝑇𝑃/(TP+𝐹𝑃)) which represents GPT-3.5’s ability to

correctly identify correct submissions and minimize false positives, recall

(𝑇𝑃/(𝑇𝑃+𝐹𝑁)) which indicates GPT-3.5’s ability to correctly identify correct submis-

sions from the total number of actual correct submissions, specificity (𝑇𝑁/(𝑇𝑁+𝐹𝑃))

which reflects GPT-3.5’s ability to correctly identify incorrect submissions and mini-

mize false negatives, and finally the F1 score (2∗𝑇𝑃/(2*𝑇𝑃+𝐹𝑃+𝐹𝑁)) [26]. The F1

score (Dice Coefficient) is the harmonic mean of precision and recall, providing a bal-

anced measure of GPT-3.5’s performance. Unlike accuracy alone, the F1 score consid-

ers both the true positive rate (recall) and the positive predictive value (precision). It

assesses the ability to correctly identify positive instances and avoid false positives,

offering a more comprehensive evaluation of GPT-3.5’s effectiveness and robustness.

Table 2. Evaluation Metrics Comparison of GPT-3.5’s Classification Performance Across the

Three Runs for the Two Assignments

 SimpleWhileLoop Queue
OA

Metric 1st 2nd 3rd OA 1st 2nd 3rd OA

Accuracy 75 % 72 % 57 % 70 % 81 % 75 % 81 % 81 % 73 %

Precision 92 % 91 % 71 % 85 % 67 % 50 % 67 % 60 % 80 %

Recall 63 % 61 % 52 % 58 % 50 % 50 % 50 % 50 % 57 %

Specificity 92 % 92 % 71 % 86 % 92 % 83 % 92 % 88 % 88 %

F1 score 75 % 70 % 60 % 69 % 57 % 50 % 57 % 57 % 67 %

For the first assignment (SimpleWhileLoop), the results show an overall accuracy of

70 %, with an overall precision of 85 %. However, the recall values hover around 58 %.

The F1 score, which reflects the balance between precision and recall shows a similar

pattern, with an overall value of 69 %. Although, the specificity values show a wide

distribution between 71 and 92 % across the runs, with an overall of 86 %. GPT-3.5

shows a slightly better performance overall for the second assignment (Queue): The

accuracy ranges from 75 to 81 % across the runs, with an overall accuracy of 81 %. The

precision shows some variation but still maintains an overall value of 60 %. The recall

remains consistent at 50 % for all 3 runs, indicating that GPT-3.5 consistently identifies

only half of the correct submissions correctly. The specificity ranges from 83 to 92 %.

The overall accuracy for both tasks (all submissions, and all six runs) is 73 %. A

precision of 80 % and specificity of 88 % was achieved by GPT-3.5. However, GPT-

3.5 achieved a recall of only 57 %. The overall F1 score for GPT-3.5’s performance in

correcting the two programming assignments is 67 %.

Short Paper—Paper Formatting for online-journals.org

4.3 Evaluation of the Generated Feedback Text

Only looking at the submission classification quality regarding correctness by GPT-

3.5 does not capture the feedback quality. Hence, we qualitatively assessed the feed-

back content, considering external traits like appearance and superficial content, as well

as internal traits, such as content quality (cf. Table 3 and 4, RQ2). Internal traits cate-

gorize the feedback into three groups: feedback without code (lacking Java program-

ming language keywords or variable/method names), feedback with code, and feedback

containing only code. The feedback is identified as personalized if it references parts

or (variable) names from the student's submission. If the feedback contains sugges-

tions/corrections and nothing wrong was stated, which means that fixing all errors men-

tioned and implementing the suggestions results in working code or at least does not

break the code further, it is categorized as only correct corrections/suggestions. Par-

tially correct is assigned when only some feedback parts are correct, while others in-

troduce new issues. Finally, false correction indicates that the feedback only contains

non-existent errors or suggestions resulting in broken code. These explanations show

that correctness does not necessarily imply compliance with the assignment. Feedback

was deemed compliant with the assignment if the suggestions align with the given in-

structions. This means that both correct and incorrect corrections can be compliant, and

for the feedback to be considered compliant, the code does not have to meet all speci-

fications after implementing the suggestions, which may happen if GPT-3.5 misses

some errors. Completely correct correction signifies that applying the feedback results

in a fully correct submission. Finally, we also tracked whether feedback identified and

localized mentioned bugs and if these bugs were present in those locations.

The analysis of erroneous feedback revealed patterns, which were then used to group

similar feedback. We categorized submissions into three cases: syntactically and func-

tionally correct (SCFC), syntactically correct but not functionally correct (SCFI, mean-

ing they do not meet task requirements), and syntactically and functionally incorrect

(SIFI). We separately analyzed the generated feedback for these three cases to gain a

deeper understanding of GPT-3.5's behavior and the feedback effectiveness.

4.3.1 Analyzing the SimpleWhileLoop assignment. Tab. 3 presents the results of the

qualitative evaluation of the feedback generated by GPT-3.5. It includes a total of 99

feedback instances for 33 submissions across 3 runs for the SimpleWhileLoop assign-

ment. For this assignment, 89 % of the generated feedback was personalized, providing

specific guidance based on the individual submissions. The remaining feedback con-

sisted of general suggestions or simple statements such as “no errors were found”.

Among all the feedback, 61 % included code style suggestions, excluding those related

to the SIFI case. Furthermore, 37 % of the feedback provided completely correct cor-

rections, accurately identifying and addressing all the issues in the submissions. Fault

localization was provided for 43 % of the feedback; however, only 32 % of them were

correct. We clustered the faulty feedback into patterns, such as, finding false errors,

presenting the submitted code as the solution, incorrect fault localization, ignoring in-

structions, and ignoring subtle requirements.

Short Paper—Paper Formatting for online-journals.org

Starting with the case of SCFC, which refers to correct submissions, GPT-3.5 con-

sistently provided 4 completely correct feedback instances over three runs. The locali-

zation for suggestions for improvement was also accurate. Most of these suggestions

were related to code style, such as using more descriptive variable names and providing

comments with examples. Interesting was the feedback, where GPT-3.5 said that there

are no logical errors in the code and provided a suggestion to enhance the code reada-

bility by commenting where nearly every line of the submission was commented (such

as i++; //Increment the loop variable). Other suggestions included to

use more white space, to use i+=2 instead of i=i+2 (or adding 1 twice). Improvement

suggestions were not limited to code style recommendations, but also included func-

tional alternatives as a possible solution approach for the problem, e. g. “use an if state-

ment inside the loop to only print the odd numbers” followed by the presentation of an

alternative solution. Throughout all 3 runs, there were 7 to 9 false negative feedback.

Although the submissions were correct, the provided feedback included false sugges-

tions and corrections, indicating a finding false errors pattern. For instance, suggestions

like using a for loop instead of a while loop or recommending to “consider using a for

loop and printing the range of odd numbers instead of printing individual odd numbers”

that made no sense. These suggestions were not compliant with the assignment require-

ments or contained incorrect statements, such as “i is initialized to 0, which is an even

number, so the loop never reaches the print statement”. There is also a main pattern in

most of the feedback, in finding false errors that do not exist, e. g. GPT-3.5 suggested

incrementing a variable by two instead of adding 1 twice where the code was actually

already doing exactly that. An example where GPT-3.5 did not correctly identify a se-

mantically correct solution printing the odd numbers from 1 to 10 is

while(i<6){System.out.println(2*i-1); i++;} where GPT-3.5 sug-

gested to change while(i<6) to while(i<=10). The pattern presenting the sub-

mitted code as the solution occurred three times.

For the SCFI cases, out of 11 submissions, in the first two runs, 10 were correctly

identified as incorrect by GPT-3.5, except for one submission where GPT-3.5 incor-

rectly explicitly said that it is correct in all three runs. This submission was quite re-

markable, because all numbers are printed out and, in the second run, GPT-3.5 recog-

nized that only odd numbers should be printed and suggested to introduce a condition

variable “isOdd” to improve readability. In the last run, three additional false positive

cases occurred, where either the statement “No errors were found” was provided or a

code correction was proposed. All feedback provided was personalized. The only case

when a sample solution was suggested without further hints or explanations was for a

submission that contains only a class name and an empty while loop body. The quality

of the feedback texts remained consistently low across the runs, particularly in terms of

being completely correct, with a maximum of 5 out of 11 submissions. The number of

feedback instances that demonstrated compliance also decreased from 10 to 6 instances.

In the SIFI case, there are 3 submissions that are syntactically and, therefore, also

functionally incorrect. GPT-3.5 correctly classified all 3 submissions as “incorrect" in

all three runs. There were no false positives. Personalized feedback was generated for

each of these submissions throughout the three runs. No feedback included code style

suggestions. In the first run, the feedback exclusively consisted of hints with code

Short Paper—Paper Formatting for online-journals.org

sections. However, in the subsequent two runs, the feedback varied and included hints

with and without, or solely corrected code. However, out of these submissions, only 6

feedbacks were found to be compliant with the task requirements. Fault localization

was provided in 8 feedbacks, but only 4 had their errors correctly localized, along with

proper correction suggestions. Examples of feedback with correct fault localization in-

clude the following (quote from GPT-3.5): “//Error 1: There is no initialization of the

int variable ’i’ used in the while loop. //Hint: Declare and initialize the int variable ’i’

before the while loop.” The pattern of incorrect fault localization emerged in 4 feed-

back instances where GPT-3.5 recognized the submission as incorrect but failed to ac-

curately localize the actual error. Instead, it identified other errors that are not the actual

cause of the problem. For example, the error was solely in the class names (“Simple-

ForLoop” instead of “SimpleWhileLoop”). However, the rest of the submission was

correct and compliant with the given task requirements. Furthermore, GPT-3.5 pro-

vided false suggestion, such as: “// Error: The code does not count from 1 but from 0.

// Hint: The while loop should start with the variable ‘i’ set to 1 instead of 0.”

Table 3. Characteristics of the Generated Feedback for the SimpleWhileLoop Assignment

(SCFC: syntactically and functionally correct; SCFI: syntactically correct and function-

ally incorrect; SIFI: syntactically and functionally incorrect)

SimpleWhileLoop SCFC, n=19 SCFI, n=11 SIFI, n=3 All, n=99

Characteristics of feed-

back
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd Sum %

Feedback without code 1 1 2 1 1 2 0 1 0 9 9

Feedback text with code 17 17 16 10 9 8 3 2 2 84 85

Feedback containing just

code
1 1 1 0 1 1 0 0 1 6 6

Personalized feedback 16 18 18 11 11 10 3 3 3 88 89

Code style suggestion 16 11 11 9 7 6 0 0 0 60 61

Only correct correction 10 10 9 6 9 6 2 2 3 57 58

Partially correct

correction/suggestion
4 1 2 3 1 2 0 0 0 13 13

Only false
correction/suggestion

5 7 8 2 1 3 1 1 0 28 28

Compliance with the as-

signment specification
15 12 13 8 10 6 1 2 3 70 71

Completely correct
correction

4 5 9 4 5 4 2 2 2 37 37

(Fault) localization 11 5 6 8 7 7 3 3 2 43 43

(Fault) localization correct 9 5 6 1 3 4 2 2 0 32 32

An overall recurring pattern was, however, that GPT-3.5 failed to distinguish the

difference in capitalization of the word “Boom” in the print statement, as explicitly

stated in the assignment instructions, in all 99 feedback instances. Submissions with

“BOOM” or “boom” were handled exactly the same way by GPT-3.5 (ignoring

Short Paper—Paper Formatting for online-journals.org

instructions or ignoring subtle requirements patterns), and other correction suggestions

used the exact same capitalization.

4.3.2 Analyzing the Queue assignment. The qualitative evaluation of the Queue as-

signment is based on 16 submissions, each processed 3 times by GPT-3.5, resulting in

48 generated answers providing feedback. As before we examined the three different

cases separately. All received feedback was personalized, as they referenced the related

submissions, when pointing out errors and suggestions. 28 of the 48 answers contained

suggestions to improve the code style. With 8 out of 12 answers (SCFC), 3 out of 6

(SCFI), and 17 out of 30 (SIFI), the feedback comprising code style suggestions is

equally distributed through all three cases. However, these suggestions consisted

merely of general statements, such as the need for comments throughout the code to

explain the logic and proper indentation for better readability.

Table 4. Characteristics of the Generated Feedback for the Queue Assignment

Queue SCFC, n=4 SCFI, n=2 SIFI, n=10 All, n=48

Characteristics of feed-

back
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd Sum %

Feedback without code 0 0 0 0 0 0 0 0 0 0 0

Feedback text with code 4 4 4 2 2 2 10 8 9 45 94

Feedback containing just

code
0 0 0 0 0 0 0 2 1 3 6

Personalized feedback 4 4 4 2 2 2 10 10 10 48 100

Code style suggestion 4 2 2 1 1 1 6 5 6 28 58

Only correct
correction/suggestion

1 0 0 0 0 0 3 5 3 12 25

Partially correct

correction/suggestion
0 2 1 2 2 2 5 4 4 22 46

Only false correction 3 2 3 0 0 0 2 1 3 14 29

Compliance with

assignment
2 2 2 0 0 0 6 6 7 25 52

Completely correct
correction

1 0 1 0 0 0 3 3 1 9 19

(Fault) localization 3 2 3 2 2 2 7 8 6 35 73

(Fault) localization correct 0 0 0 1 1 1 6 7 3 19 40

There are 4 submissions and 12 feedback instances belonging to the SCFC case (cf.

Tab. 4). All feedback was given in the form of text with code, as lists of errors and

suggestions. In 50 % of the feedback, the student submission was identified incorrectly

as an incorrect submission. Noticeable is, that only one feedback is completely correct,

but three partially correct and eight simply false. This is accompanied by an error lo-

calization in eight submissions with not even one being correct. Only 52 % of the feed-

back complies with the instructions. Furthermore, we observed three patterns present

in the feedback. The first and most prominent pattern is evident in all feedback, wherein

GPT-3.5 references the code originally found in the student submission and presents it

Short Paper—Paper Formatting for online-journals.org

as a solution to a non-existent error. This is closely associated with GPT-3.5, assuming

that the submitted code contains an error in the student's code that requires correction.

For instance, one piece of feedback states, “The `remove` method should check to see

if the queue is empty before trying to remove elements, otherwise there would be an

error.” while the respective method already performs this exact check. The second pat-

tern is present in the feedback for 3 submissions. Here, GPT-3.5 is simply ignoring the

given instructions. It suggests to change names, like renaming isEmpty() to is-

ListEmpty(), or the return types of methods, in contradiction to the given interface

twice. The third pattern is seen in feedback for two submissions where GPT-3.5 mis-

takenly identifies non-existent code errors. Unlike the first pattern, there's no submitted

involved. Instead, GPT-3.5 seems to struggle in understanding the code and attempts

to fix what it perceives as issues. For instance, it suggests adding an unnecessary “else”

statement in the “peek()” method, stating : “Error: peek() does not include an else

case to return EMPTY_VALUE. Hint: In the peek() method, add an else statement to

return EMPTY_VALUE when the queue is empty.” with GPT-3.5 apparently not recog-

nizing, that an else case is not needed for this method to work:

public int peek(){

 if(!this.isEmpty()){

 return head.getValue();

 }

 return EMPTY_VALUE;

}

For the SCFI case, involving two submissions and six GPT-3.5 feedback instances,

one incorrectly classified a submission as correct (cf. Tab. 4), while another provided a

mix of text and code. While none of the corrections was entirely correct, none was

entirely wrong; they were all partially correct. Each feedback included error localiza-

tion, which was accurate for half of the submissions (3). However, none of the feedback

fully complied with the provided instructions, exhibiting two recurring patterns. The

pattern of finding false errors (only false correction/suggestion) occurred in two feed-

backs, and the incorrect error localization observed in the 2nd and 3rd run of the SCFI

case can be linked to this pattern. The pattern ignoring the instructions was evident in

all six corrections (cf. Tab. 4). The first of these two patterns can be traced back to the

usage of the ternary condition operator inside a return statement, the second pattern

shows up, because all submissions do not use the required singly linked list, but a dou-

bly linked list or the LinkedList from the Java collection framework.

For the third case (SIFI), we examined the 30 feedback instances from GPT-3.5

based on ten student submissions, from which two classified the associated submission

incorrectly as correct. Three responses consisted of both text and code, and three further

responses consisted of code only. The correction of 11 feedback instances was com-

pletely correct, 13 corrections were partially correct and six corrections false. A total

of 21 corrections has fault localization included, and 16 of these were correct. Moreo-

ver, 19 responses of GPT-3.5 conform to the given instructions. All three patterns are

also present in the feedback for this case. Interestingly the presenting the submitted

code as the solution pattern is present in 9 corrections, but 8 of these corrections have

Short Paper—Paper Formatting for online-journals.org

no semantic error but only a syntactical error based on a missing semicolon. The finding

false errors pattern can be found five times. These always correspond to some code

where a connection to some other part of code has to be made such as GPT-3.5 men-

tioning missing null checks but actually this check is done through a method call. Sim-

ilar false errors are found for if-else conditions or for loops in a slightly more compli-

cated fashion. Also, code using the ternary condition operator gets tagged again as in-

correct. The feedback for 16 submissions contains the ignoring instructions pattern. In

18 submissions an implementation of the singly linked list itself was missing (the node

class), with GPT-3.5 not correcting these in 15 cases. Furthermore, one correction ig-

nored the given interface and suggested renaming a method. A new observed pattern

unique to the third case is that if a submission had significant errors, including syntax

and logic errors leading to exceptions, GPT-3.5 provided code solutions.

5 Discussion

5.1 Quality of GPT-3.5 in Determining the Submissions’ Correctness

For RQ1, we investigated the quality of GPT-3.5 in determining the correctness. On

one hand, the overall accuracy shows that 73 % of all classifications made by GPT-3.5

are correct. Also, when GPT-3.5 identifies a submission as correct, it is indeed correct

in 80 % of the cases (precision). However, the recall value is significantly lower, indi-

cating that GPT-3.5 could only identify 58 % of all correct submissions in the data set.

This implies that a portion of the correct submissions remain unnoticed, which could

be discouraging for students whose submissions are correct but still get evaluated as

incorrect. The specificity of 88 % highlights GPT-3.5’s ability to correctly identify and

classify incorrect submissions. On the other hand, a comparison between the two as-

signments shows significant differences for the precision (SimpleWhileLoop: 85 % vs.

Queue: 60 %). A reason for this might also lie in the different frequency of correct

submissions in the dataset. Furthermore, there are runs in which the accuracy is as low

as 57 %, the precision as low as 50 %, and the specificity as low as 71 % (cf. Tab. 2).

Hence, the quality of GPT-3.5’s feedback seems to be dependent on the specific assign-

ment and also on hidden factors related to the GPT-3.5 model. This point of uncertainty

has been highlighted in related studies as well (e. g., [12]). The overall accuracy of

GPT-3.5 (73 %) seems to be in line with comparable research on Python tasks (57 to

79 %) [24] and to be comparable with student peer reviews where partial incorrect feed-

back in approx. 14 % of the cases [5] or an accuracy of 64 % [6] have been reported.

5.2 Characterization of the Generated Feedback by GPT-3.5

An in-depth analysis of the generated feedback (RQ2) reveals for the Simple-

WhileLoop assignment that only 37 % of the feedback were completely correct (cf. Tab.

3) and for the Queue 25 % (cf. Tab. 4). Here, however, needs to be considered whether

is pedagogically better to provide a list of all errors at once or only the major ones first

(cf. discussion in [27]). Hence, the completely correct characterization might be too

Short Paper—Paper Formatting for online-journals.org

strict, and the focus should be put on the only correct correction/suggestion and par-

tially correct correction/suggestion characterizations. In 28 % of the cases in which

GPT-3.5 provided hints on hallucinated errors, suggested alternative solution paths

such as using a for loop instead of a while loop (which is not compliant with the in-

struction), or incorporating an if condition to test for odd numbers instead of using i+2,

where the submissions were already correct. Only 58 % of the feedback contained only

correct correction/suggestion. From these results, it can be concluded that currently

GPT-3.5 does not guarantee reliability in providing completely accurate feedback. It

may be important to further investigate how students respond to partially correct feed-

back or feedback that only provides false suggestions for improvement or what other

scenarios are beneficial here such as providing the GPT-3.5 feedback to teaching assis-

tants as a draft for semi-automatic feedback provisioning. This also opens up the debate

between formative and summative assessment. For summative assessment an accurate

diagnosis is fundamental. Formative assessment, however, should help learners learn

and reflect on their submission, so it may be more forgiving if occasional errors or

incorrect suggestions are included if they foster reflection and exploration. Still, incor-

rect feedback should be avoided, if possible, to not confuse novicesto prevent confusing

novices. For peer reviews, often very short feedback is reported (e. g., median 13-14

words [5, 6]), here GPT-3.5 provides significantly longer feedback with a median of 82

words. However, students do not get the advantage of seeing other solution strategies

and learning to critique code.

One significant advantage of GPT-3.5’s feedback is that it is personalized in all cases

for the Queue assignment and in 89 % of cases for the SimpleWhileLoop. Another ad-

vantage of GPT-3.5 is error localization “for free”. For instance, 53 % of errors were

successfully localized, and among these localized errors, 35 % were correctly identified

overall for both assignments. These advantages of personalized feedback and error lo-

calization sets GPT-3.5 apart from conventional e-assessment systems that require the

laborious task of writing functional tests for all anticipated errors to provide fine

grained feedback and error localization. With GPT-3.5, the generation of personalized

feedback can be automated, providing a scalable and efficient solution for delivering

targeted guidance to students. GPT-3.5’s ability to better identify incorrect submissions

as incorrect to identify correct submissions as correct may be the prompt used that spe-

cifically asked for finding errors. Hence, prompt engineering or using different prompts

for different cases might allow to optimize the situations where the use of GPT-3.5 is

most appropriate: In the SCFC (syntactically and functionally correct) case, it would

be beneficial to let GPT-3.5 suggest code style improvements, as the evaluation showed

that GPT-3.5 provided many good coding style suggestions and alternative solutions.

This can stimulate creativity and critical thinking among students. In the SCFI (syntac-

tically correct but functionally incorrect) case, the focus would be on querying GPT-

3.5 specifically for semantic errors in the submissions and error localization. Finally,

in the SIFI (syntactically and functionally incorrect) case, GPT-3.5 showed the best

results compared to the other cases. Hence, it is crucial the prompt GPT-3.5 to be more

precise about the types of errors, as it has already demonstrated good performance in

fault localization. To better detect the different cases, it might be helpful to combine

Short Paper—Paper Formatting for online-journals.org

traditional e-assessment systems (with test cases) with GPT-3.5 to enhance the benefits

of both systems.

There are several submissions for which GPT-3.5 provided code-only feedback. It

seemed as if this only happened when there were too many errors or no real solution

attempted by the students. Here it is questionable whether such a model solution with-

out explanation helps struggling students or might encourage gaming the system ap-

proaches (cf. [28]). It would be interesting to compare this with the feedback provided

by real teaching assistants or peer reviews.

5.3 Strengths and Weaknesses of GPT-3.5 in Delivering Feedback

To answer RQ3, GPT-3.5’s strengths lie in its ability to provide personalized feed-

back and suitable code corrections that may enhance the learning experience and help-

ing address coding weaknesses effectively at scale quickly. Particularly interesting is

that for the SimpleWhileLoop GPT-3.5 did not honor the casing of the string to be

printed out but focused on the overall correctness of the algorithm (the more difficult

part of the assignment; this was also partly the case for the Queue assignment; or sub-

missions where the algorithm was basically correct but contained a syntax error). This

aligns with findings of a related study that the LLM Codex struggles with output for-

matting on code generation [15]. Although weaknesses include occasional inaccuracies

in error identification (particularly for subtle requirements such as the casing of strings),

provisioning of model solutions without explanations, suggesting changes violating the

assignment instructions, too generic feedback, and limitations with complex tasks.

GPT-3.5 is just one example of an LLM that was chosen here due to its availability

and public API. In the future, there might be different LLMs or even more specialized

LLMs for this specific task that show a better performance. Further research is needed.

6 Limitations

It needs to be noted that GPT is under active development. Hence, future versions

might yield different results. Additionally, the response highly depends on the questions

asked. Hence, using different questions might also have an impact on the results. We

experimented with different (slightly) prompts, and all showed comparable results on

our tests. As GPT-3.5 is a LLM and is trained to predict subsequent tokens based on

preceding ones, its responses can be different even if the very same question is asked.

To address this threat, every submission was sent to GPT-3.5 three times and the results

are aggregated. Moreover, the results might vary depending on aspects such as the pro-

gramming language used, and the description of the task. Also, only two assignments

were analyzed. The tasks were selected from a real course and, therefore, allow insights

into how GPT-3.5 performs on real input. Finally, the manual classifications used here

to categorize the responses from GPT-3.5 might be subjective. To mitigate this threat,

the classification was conducted by two researchers with an intensive exchange.

Short Paper—Paper Formatting for online-journals.org

7 Conclusions and Outlook

In this paper, we explored how effectively the LLM GPT-3.5 can provide personalized

feedback, including code correction and style suggestions, for programming tasks. We

evaluated GPT-3.5 using student submissions from two real-world assignments in a

first-semester course. The results indicate a 73 % accuracy rate in correctly identifying

submissions as either correct or incorrect. Furthermore, GPT-3.5 provided adequate

feedback in 47 % of cases. Overall, it performed better in identifying incorrect submis-

sions than in recognizing correct ones. An in-depth analysis revealed GPT-3.5's capa-

bility to offer personalized feedback by detecting syntax and functional errors in student

submissions and providing suggestions for code improvement. However, GPT-3.5 oc-

casionally made errors or suggested changes that did not align with assignment instruc-

tions. Due to identified reliability and consistency issues, we advise caution when using

LLMs and particularly GPT-3.5 for fully automatic student feedback on programming

tasks at this time. Currently, it is not good enough for summative grading. Nonetheless,

the current version can be a valuable tool for teaching assistants in pre-assessing large-

scale assignments. It can be used to facilitate quick error identification and generating

drafts for personalized feedback, reducing the need for writing unit tests. We plan fur-

ther research to address current weaknesses and determine optimal use cases for LLMs.

This includes exploring how to integrate them in e-assessment systems with traditional

tests, allowing for different prompts in syntactically correct submissions. An alternative

approach might be to use a LLM to repair syntactically incorrect submissions and then

use the repaired version for partial scoring of the functional correctness. Finally, vari-

ous feedback characteristics, as described in Section 4.2, could be automatically meas-

ured to determine whether feedback needs regeneration or optimization with a different

prompt and learner data. Future versions of GPT and other LLMs will likely see im-

provements, expanding their potential applications in education as discussed in this pa-

per. Hence, we plan to compare our results with other LLMs.

7 Acknowledgments

This research is part of the project AIM@LMU funded by the German Federal Min-

istry of Education and Research (BMBF) under the grant number 16DHBKI013. The

responsibility for the content of this publication lies with the authors.

The authors thank the students of the lecture Einführung in die Programmierung of

winter semester 2021/22 who allowed us to use their submissions for this research.

8 References

[1] A. Luxton-Reilly, Simon, I. Albluwi, B. A. Becker, M. Giannakos, A. N. Kumar, L. Ott, J.

Paterson, M. J. Scott, J. Sheard, and C. Szabo, “Introductory programming: A systematic

literature review,” in Proc. ITiCSE, 2018, pp. 55–106.

https://doi.org/10.1145/3293881.3295779

[2] J. Hattie and H. Timperley, “The power of feedback,” Review of Educational Research, vol.

77, no. 1, pp. 81–112, 2007. https://doi.org/10.3102/003465430298487

https://doi.org/10.1145/3293881.3295779
https://doi.org/10.3102/003465430298487

Short Paper—Paper Formatting for online-journals.org

[3] S. Strickroth and F. Bry, “The future of higher education is social and personalized! experi-

ence report and perspectives,” in Proc. CSEDU, vol. 1, 2022, pp. 389–396.

https://doi.org/10.5220/0011087700003182

[4] T. D. Indriasari, A. Luxton-Reilly, and P. Denny, “A review of peer code review in higher

education,” TOCE, vol. 20, no. 3, pp. 1–25, 2020. https://doi.org/10.1145/3403935

[5] N. Heller and F. Bry, “Organizing peer correction in tertiary stem education: An approach

and its evaluation,” iJEP, vol. 9, no. 4, pp. 16–32, 2019.

https://doi.org/10.3991/ijep.v9i4.10201

[6] S. Strickroth, “Does peer code review change my mind on my submission?” in Proc.

ITiCSE, vol. 1, 2023, pp. 498–504. https://doi.org/10.1145/3587102.3588802

[7] S. Strickroth and M. Striewe, “Building a corpus of task-based grading and feedback sys-

tems for learning and teaching programming,” iJEP, vol. 12, no. 5, pp. 26–41, 2022.

https://doi.org/10.3991/ijep.v12i5.31283

[8] C. Geng, Y. Zhang, B. Pientka, and X. Si, “Can ChatGPT pass an introductory level func-

tional language programming course?” arXiv:2305.02230 [cs], 2023.

[9] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F. Bissyandé, “Is ChatGPT

the ultimate programming assistant – How far is it?” arXiv:2304.11938 [cs.SE], 2023.

[10] J. Savelka, A. Agarwal, M. An, C. Bogart, and M. Sakr, “Thrilled by Your Progress! Large

Language Models (GPT-4) No Longer Struggle to Pass Assessments in Higher Education

Programming Courses,” in Proc. CER, 2023. https://doi.org/10.1145/3568813.3600142

[11] J. Finnie-Ansley, P. Denny, A. Luxton-Reilly, E. A. Santos, J. Prather, and B. A. Becker,

“My AI wants to know if this will be on the exam: Testing OpenAI’s Codex on CS2 pro-

gramming exercises,” in Proc. ACE, 2023, pp. 97–104.

https://doi.org/10.1145/3576123.3576134

[12] A. Hellas, J. Leinonen, S. Sarsa, C. Koutcheme, L. Kujanpää, and J. Sorva, “Exploring the

responses of large language models to beginner programmers’ help requests,” in Proc. CER,

2023. https://doi.org/10.1145/3568813.3600139

[13] N. M. Shafiq Surameery and M. Y. Shakor, “Use ChatGPT to Solve Programming Bugs,”

IJITC, vol. 3, no. 01, pp. 17–22, 2023. http://doi.org/10.55529/ijitc.31.17.22

[14] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An Analysis of the Automatic Bug Fixing

Performance of ChatGPT,” arXiv:2301.08653 [cs.SE], 2023.

[15] J. Finnie-Ansley, P. Denny, B. A. Becker, A. Luxton-Reilly, and J. Prather, “The Robots

Are Coming: Exploring the Implications of OpenAI Codex on Introductory Programming,”

in Proc. ACE, 2022, pp. 10–19. https://doi.org/10.1145/3511861.3511863

[16] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather, and E. A. Santos,

“Programming Is Hard – Or at Least It Used to Be: Educational Opportunities and Chal-

lenges of AI Code Generation,” in Proc. SICSE, 2023, pp. 500–506.

https://doi.org/10.1145/3545945.3569759

[17] P. Denny, J. Prather, B. A. Becker, J. Finnie-Ansley, A. Hellas, J. Leinonen, A. Luxton-

Reilly, B. N. Reeves, E. A. Santos, and S. Sarsa, “Computing Education in the Era of Gen-

erative AI,” arXiv:2306.02608 [cs.CY], 2023.

[18] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic generation of programming

exercises and code explanations using large language models,” in Proc. CER, 2022.

https://doi.org/10.1145/3501385.3543957

[19] T. Phung, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar, A. Singla, and G. Soares,

“Generating high-precision feedback for programming syntax errors using large language

models,” arXiv:2302.04662 [cs.PL], 2023.

https://doi.org/10.5220/0011087700003182
https://doi.org/10.1145/3403935
https://doi.org/10.3991/ijep.v9i4.10201
https://doi.org/10.1145/3587102.3588802
https://doi.org/10.3991/ijep.v12i5.31283
https://doi.org/10.48550/arXiv.2305.02230
https://doi.org/10.48550/arXiv.2304.11938
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3568813.3600139
http://doi.org/10.55529/ijitc.31.17.22
https://doi.org/10.48550/arXiv.2301.08653
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.48550/arXiv.2306.02608
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.48550/arXiv.2302.04662

Short Paper—Paper Formatting for online-journals.org

[20] J. Leinonen, A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and B. A. Becker, “Using

large language models to enhance programming error messages,” in Proc. SIGCSE, 2023,

pp. 563–569. https://doi.org/10.1145/3545945.3569770

[21] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein, and J. Leinonen,

“Experiences from using code explanations generated by large language models in a web

software development e-book,” in Proc. SIGCSE, 2023, pp. 931–937.

https://doi.org/10.1145/3545945.3569785

[22] J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein, J. Kim, A. Tran, and A. Hellas,

“Comparing code explanations created by students and large language models,” in Proc.

ITiCSE, 2023, pp. 124–130. https://doi.org/10.1145/3587102.3588785

[23] N. Kiesler, D. Lohr, and H. Keuning, “Exploring the potential of large language models to

generate formative programming feedback,” in Proc. FiE, 2023. arXiv:2309.00029

[24] R. Balse, B. Valaboju, S. Singhal, J. M. Warriem, and P. Prasad, “Investigating the Potential

of GPT-3 in Providing Feedback for Programming Assessments,” in Proc. ITiCSE, 2023,

pp. 292–298. https://doi.org/10.1145/3587102.3588852

[25] S. Strickroth, H. Olivier, and N. Pinkwart, “Das GATE-System: Qualitätssteigerung durch

Selbsttests für Studenten bei der Onlineabgabe von Übungsaufgaben?” in Proc. DeLFI,

2011, pp. 115–126. https://dl.gi.de/handle/20.500.12116/4740

[26] A. Larner, The 2x2 Matrix Contingency, Confusion and the Metrics of Binary Classifica-

tion. Springer, 2021. https://doi.org/10.1007/978-3-030-74920-0

[27] J. Jeuring, H. Keuning, S. Marwan, D. Bouvier, C. Izu, N. Kiesler, T. Lehtinen, D. Lohr, A.

Peterson, and S. Sarsa, “Towards giving timely formative feedback and hints to novice pro-

grammers,” in ITiCSE-WGR, 2022, pp. 95–115. https://doi.org/10.1145/3571785.3574124

[28] R. S. Baker, A. De Carvalho, J. Raspat, V. Aleven, A. T. Corbett, and K. R. Koedinger,

“Educational software features that encourage and discourage “gaming the system”,” in

Proc. AIED, 2009, pp. 475–482. https://doi.org/10.3233/978-1-60750-028-5-475

https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.48550/arXiv.2309.00029
https://doi.org/10.1145/3587102.3588852
https://dl.gi.de/handle/20.500.12116/4740
https://doi.org/10.1007/978-3-030-74920-0
https://doi.org/10.1145/3571785.3574124
https://doi.org/10.3233/978-1-60750-028-5-475
mailto:imen.azaiz@ifi.lmu.de
https://orcid.org/0009-0005-6458-4169
mailto:oliver.deckarm@campus.lmu.de
mailto:oliver.deckarm@campus.lmu.de
https://www.tel.ifi.lmu.de/

