
Supporting the Semi-Automatic Feedback

Provisioning on Programming Assignments

Sven Strickroth1[0000−0002−9647−300X] and Florian Holzinger1

Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
sven.strickroth@ifi.lmu.de

Abstract. Feedback is important for learning, however, manual feed-
back provisioning is time and resource consuming. For programming edu-
cation, various systems have been developed to automate recurring tasks
or the whole feedback generation. As fully automated systems are not
always a viable option, this paper investigates how teaching assistants
can be supported in semi-automated assessment of programming assign-
ments to give good feedback more easily. An existing semi-automated
e-assessment system is extended with con�gurable feedback snippets as
well as adaptively recommended feedback snippets based on feedback of
similar submission in order to evaluate the e�ects on the grading and
the feedback given by teaching assistants. The results indicate that such
feedback snippets lead to more consistent and motivational feedback, can
help �nding mistakes, and have no impact on the awarded grades.

Keywords: Feedback Provisioning · Assessment · Usability.

1 Introduction

A central component of introductory programming courses in higher education
are homework assignments in which students write small programs themselves
or extend existing programs on a regular basis. As learning programming is often
perceived as hard by novices, a timely, individual, explanatory, and motivational
feedback is important [3, 8, 9]. Fully automated systems can provide instant and
objective feedback [6], but they are still limited as all tests and feedback need to
be pre-de�ned and not all aspects such as creativity or implementation quality
can be assessed automatically [7]. Therefore, manual or semi-automated grading
is often necessary. This requires a signi�cant amount of time and e�ort that
only scales with the number of teaching assistants. There is, however, usually
a (monetary) limitation on how many assistants can be hired and having more
teaching assistants is likely to introduce inhomogeneities in feedback and grading.

This paper investigates the research question of how to support teaching
assistants in semi-automatic assessment so that they can provide consistent and
motivating feedback more easily. The main idea is to automate recurring tasks
and to provide pre-de�ned feedback snippets as well as adaptively recommended
feedback snippets based on similar submissions that have already been assessed.

Strickroth
Texteingabe
This is an Author Accepted Manuscript version of the following chapter: Sven Strickroth & Florian Holzinger, Supporting the Semi-Automatic
Feedback Provisioning on Programming Assignments, published in Methodologies and Intelligent Systems for Technology Enhanced Learning,
12th International Conference, edited by Marco Temperini, Vittorio Scarano, Ivana Marenzi, Milos Kravcik, Elvira Popescu, Rosa Lanzillotti,
Rosella Gennari, Fernando De la Prieta, Tania Di Mascio, and Pierpaolo Vittorini, 2023, Springer reproduced with permission of Springer.
The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-20617-7_3

Strickroth
Texteingabe
Users may only view, print, copy, download and text- and data-mine the content, for the purposes of academic research. The content may not be (re-)published verbatim in whole or in part or used for commercial purposes. Users must ensure that the author’s moral rights as well as any third parties’ rights to the content or parts of the content are not compromised.



2 S. Strickroth, F. Holzinger

The remainder is organized as follows: First, the state of the art is presented.
This is followed by descriptions of the prototype, the evaluation design, and the
results. The paper closes with a discussion, a summary, and an outlook.

2 Exploring the Design Space: State of the Art

There is a large number of systems and approaches to support teachers in pro-
gramming education in terms of manual and semi-automatic grading and pro-
viding feedback [6, 11]. All supportive systems collect the students' solutions at
a central place and allow teaching assistants to download or view these.

There seem to be two (orthogonal) dimensions on which systems focus: First,
there are semi-automated systems such as Praktomat [2] that automate recurring
tasks, such as compiling and testing of submissions, and present the results for
manual grading to the teaching assistants. Such automation has shown to be
very helpful, e. g. to identify mistakes easily, and a (signi�cant) time saver [10].
Second, there are systems such as Rubyric [1] that focus on supporting the
manual grading and feedback provisioning by providing a (detailed) form/rubric.
The scoring rubrics can be either static or con�gurable and some tools (e. g.,
Rubyric) allow teachers to de�ne re-usable feedback snippets. Rubyric was found
helpful by teaching assistants, feedback was more consistent, and students were
satis�ed with amount and quality of the feedback [1].

Based on the experience that novice programmers often make similar mis-
takes or have common misconceptions, there is a concept proposal to further
support the feedback provisioning by an collaborative approach [4]: During the
assessment of a submission, a system could adaptively suggest already entered
feedback for similar submissions that can be reused and personalized in order to
release teaching assistants from writing the same feedback repeatedly.

To summarize: In all systems known to the authors there is no system that
supports both dimensions and also provides adaptive recommendations for feed-
back snippets. Also, the authors are not aware of any evaluation of the e�ects
of such supportive features on the awarded grades and the provided feedback.

3 Adaptive Feedback Snippet Recommendations

The research gap identi�ed in the previous section is addressed by an exten-
sion of the e-assessment system GATE, which is in use since 2011 [10]. GATE
supports teaching assistants by displaying the results of tests that are automat-
ically executed after the submission deadline, a teacher con�gurable rubric, and
(optionally) with plagiarism detection by linking similar submissions.

For this research GATE was extended with teacher con�gurable feedback
snippets and an adaptive feedback snippet recommendation that is based on
a simple clustering approach [5]: The outputs of all failed automated tests are
parsed to detect Java exceptions, failed unit test steps, or syntax errors. Then,
the similarities to all other failed test outputs are calculated and stored in the
database. Finally, during the assessment, already given feedback for similar errors



Supporting the Semi-Automatic Feedback Provisioning 3

and test results is presented to the teaching assistants ordered by the calculated
similarity. For technical reasons, the single-page assessment work�ow needed
to be split into a multi-page work�ow so that the feedback snippets can be
calculated for a speci�c assessment step (e. g. a syntax or unit test).

Fig. 1 depicts an excerpt from the GUI for the teaching assistants of the new
interface. The assessment consists of three steps/pages (an overview of the steps
can be seen at the upper right: for the �rst two steps automatic tests are linked
and only the �rst one passed) and a separate overview page. In the middle there
is the form for awarding grades and leaving feedback for the current step. In the
�gure it concerns the syntactically correctness and also shows the result of the
automatic syntax test (PASSED, otherwise the error would be shown). Grades
are automatically pre-�lled when all tests of a step were passed. Additionally,
misconceptions can be created or added to a submission (cf. [5, 4]). Directly
below the form it is possible to select and insert a feedback snippet from a set
of pre-de�ned or adaptively recommended feedback snippets. Always displayed
at the bottom are the �les submitted by the student (with syntax highlighting).

Fig. 1. User interface of the assessment interface of the prototype consisting of three
assessment steps/pages, showing the �rst step (translated to English)

4 Evaluation

To investigate the e�ects on the grading and given feedback as well as the us-
ability, an empirical lab study with a within-subjects design and a think-aloud



4 S. Strickroth, F. Holzinger

approach was conducted. Fifteen participants took part in the study (f=5, m=10)
with an age between 23 and 55 (mean=ø=28.3, median=26). The participants
were randomly split into two groups which either used the �old� system (A → B)
or the new prototype (B → A) �rst to address ordering e�ects. All participants
were either students (10) or teachers (5) from three German universities. Eleven
participants already had experience as teaching assistants whereas four of these
rated their teaching experience as little to medium and seven as much to very
much. Nine participants were part of the teaching team for a bachelor's course on
introductory programming at least once and three participants were part of the
teaching team of programming practicals at least once. Two of the participants
had experience with the GATE system and �ve have used other assessment tools.

For the study two mock courses each consisting of 20 students, the same pro-
gramming assignment, and (comparable) submissions were constructed (based
on real ones). For each course four submissions were not assessed, yet, of which
two contained a mistake. During the study the participants got a quick introduc-
tion into the prototypes and then had the task to assess these eight submissions.
The time needed for completing the assessment was measured. At the end a semi-
structured interview was conducted. The study used Zoom with screen sharing
and was recorded. Two 50¿ Amazon vouchers were ra�ed among the subjects.

5 Results

All participants were able to use both systems to assess the eight submissions
and it took approx. one hour per participant to �nish the study. Except for
one person (P12, A → B) who did not spot a functional error with system A,
all other participants detected all mistakes in the submissions to be assessed.
However, P12 spotted a similar error with system B based on an adaptively
recommended feedback snippet of an already assessed similar submission.

The average length of the feedback given with system A was 103 characters
and 181 characters for system B � a statistically signi�cant di�erence (p=0.001).
An in-depth analysis for correct submissions shows that the given feedback is
much shorter (A: ø=52, B: ø=158 characters) compared to incorrect submis-
sion (A: ø=133, B: ø=195) and that the given feedback is minimal longer in the
�rst system used (ø=160) compared to the second system (ø=125). No other
di�erences based on the order could be determined. Note, however, that there
are two participants who once gave the very same comment in two steps. These
two duplications have been resolved before calculating the quantitative statistics
above. The qualitative analysis of the given feedback shows that in all comments
the mistakes were clearly named except for the one participant (P12) who did
not spot an error with system A. Independent of the system used for giving
the feedback but dependent on the personal assessment style, some participants
gave hints on how to resolve the mistake. Overall, the feedback given using
system B seems to be more consistent/homogeneous and contains more posi-
tive/motivational comments compared to feedback given using system A (A: 23,



Supporting the Semi-Automatic Feedback Provisioning 5

B: 48). The awarded grades show no (statistically signi�cant) di�erence between
the two systems (A: ø=4.7; B: ø=4.9, p=0.32; grades from 0 worst to 6 best).

The time required for the assessment of the submissions shows a statistically
signi�cant di�erence (p=0.048<0.05): The assessment with system A took 3:29
min. on average and with system B 4:13 min. (a di�erence of 21%). Also, the
assessment of correct submissions took about one minute (i. e. 33%) longer with
system B compared to system A. When system A was used �rst, the correction
of incorrect submissions took about the same time (ø=4 min.) for both systems.
When system B was used �rst, however, the assessment of incorrect submissions
was about 44% quicker with system A (A: ø=3:27, B: ø=4:59 min.). Correct
submissions were always assessed quicker than incorrect ones.

In the interviews 80% of the participants explicitly stated a preference of
system B. System A was rated three times as not as supportive as system B. The
feedback snippets were mentioned positively 7 times and were estimated to result
into more consistent feedback by two participants. Three participants each stated
that they felt they provided more positive feedback or more feedback overall
with system B. However, two participants noted that the additional features also
increase the overhead and lead to a longer time to get familiarized with system B.
Five participants liked that the grades were pre-�lled for steps in which all tests
were passed and four participants rated the recommended feedback snippets as
particularly helpful for spotting the cause of the mistakes. Additionally, three
students missed a feature to directly correct a syntax error and being able to
re-run the (unit) tests within the system.

Regarding the work�ow, 12 participants rated the multi-step version as good
but system A was classi�ed as more e�cient compared to system B by six par-
ticipants. One participant (P6) explained this by saying everything is visible at a
glance and this is particularly helpful as �assessment means multitasking�. Three
participants noted however that they were less afraid of making mistakes in sys-
tem B, the feedback quality increases, the steps help structure the feedback, and
allow to focus on one aspect at a time. � The detailed usability analysis and
usage of the misconception feature are skipped here due to page restrictions.

6 Discussion, Conclusions and Outlook

This paper investigated how teaching assistants can be supported in semi-au-
tomatic assessment to give feedback more easily. A prototype was built that
automates recurring tasks and provides pre-de�ned feedback snippets as well as
adaptively recommended feedback snippets based on similar submissions. The
results of an empirical lab study indicate that the feedback snippets have been
very appreciated by the teaching assistants and lead to more consistent and
motivational feedback without in�uencing the awarded grades. The snippets also
seem to be particularly helpful for detecting causes of mistakes and do not result
in many duplicate comments. The time needed for an assessment, however, seems
to be higher for the prototype. This was particularly true for the �rst submissions
� the last ones were assessed much quicker (about 40%; 12% for the old system).



6 S. Strickroth, F. Holzinger

Reasons could be that more clicks are needed for a single assessment but it is
also possible that it is caused by the longer feedback or that the distinct steps
triggered a deeper investigation of the submissions. Interestingly, the objective
time measurement contradicts the subjective perception of �ve participants of
being quicker with the prototype. Note, however, that the time measurement
might be biased due to the think-aloud approach but should still show a tendency.

The main limitation of this research is the lab study with eight assignments
to be assessed. This number might seem small, however, the time (one hour)
per participant for the study was the limiting factor. Still, the participants came
from di�erent universities and cover a wide range of di�erent experiences.

Pre-de�ned and adaptively recommended feedback snippets are likely to be
transferable to (both formative and summative) assessments in STEM to im-
prove the given feedback, even if automatic tests are not or only partially avail-
able, and might also be helpful in settings such as peer review and peer feedback.

The work�ow needed to be changed from a single-page to a multi-page as-
sessment for the adaptive feedback snippet recommendation. Several participants
stated that they preferred either of the two work�ows. Due to the study design
no clear conclusions can be drawn upon the multi-page vs. single-page work�ow.
Therefore, further research is needed to compare both approaches with the same
feature set and the procedures of how solutions are assessed.

References

1. Auvinen, T.: Rubyric. In: Proc. Koli Calling. ACM Press (2011).
https://doi.org/10.1145/2094131.2094152

2. Breitner, J., Hecker, M., Snelting, G.: Der Grader Praktomat. In: Automatisierte
Bewertung in der Programmierausbildung, pp. 159�172. Waxmann (2017)

3. Butler, M., Morgan, M.: Learning challenges faced by novice programming students
studying high level and low feedback concepts. Proc. ascilite pp. 99�107 (2007)

4. Heller, N., Bry, F.: Human computation for learning and teaching or collaborative
tracking of learners' misconceptions. In: Intelligent Systems and Learning Data
Analytics in Online Education, pp. 323�343. Academic Press (2021)

5. Holzinger, F.: Kollaborative Unterstützung bei der semi-automatischen Bewertung
von Programmieraufgaben. Master's thesis, LMU Munich, Germany (2021)

6. Keuning, H., Jeuring, J., Heeren, B.: A systematic literature review of automated
feedback generation for programming exercises. TOCE 19(1) (2018)

7. Laÿ, C., et al.: Stager: Simplifying the manual assessment of programming exer-
cises. In: Proc. SEUH. CEUR-WS, vol. 2358, pp. 34�43 (2019)

8. Luxton-Reilly, A., et al.: Introductory programming: A systematic literature re-
view. In: Proc. ITiCSE. pp. 55�106 (2018)

9. Moreno, R.: Decreasing cognitive load for novice students: E�ects of explanatory
versus corrective feedback in discovery-based multimedia. Instructional science
32(1), 99�113 (2004). https://doi.org/10.1023/B:TRUC.0000021811.66966.1d

10. Strickroth, S., Olivier, H., Pinkwart, N.: Das GATE-System: Qualitätssteigerung
durch Selbsttests für Studenten bei der Onlineabgabe von Übungsaufgaben? In:
Proc. DeLFI. pp. 115�126. Bonn, Germany (2011)

11. Strickroth, S., Striewe, M.: Building a corpus of task-based grading and feed-
back systems for learning and teaching programming. iJEP 12(5), 26�41 (2022).
https://doi.org/10.3991/ijep.v12i5.31283




